Advertisement

Tunable Active Inductor-Based Second-Order All-Pass Filter as a Time Delay Cell for Multi-GHz Operation

  • Seyed Rasoul AghazadehEmail author
  • Herminio Martinez
  • Alireza Saberkari
  • Eduard Alarcon
Article
  • 22 Downloads

Abstract

In this paper, a CMOS wideband second-order voltage-mode all-pass filter as a time delay cell is proposed. The proposed all-pass filter is made up of solely two transistors as active elements and four passive components. This filter demonstrates a group delay of approximately 60 ps within a bandwidth of 5 GHz, achieving maximum delay–bandwidth product. The proposed circuit is highly linear and has an input-referred 1-dB compression point \(P_{1\mathrm{{dB}}}\) of 2 dBm. The power consumption of the proposed circuit is only 10.3 mW. On the other hand, an active inductor is employed in the all-pass filter instead of a passive RLC tank; therefore, the three passive components are eliminated, in order to tune the time delay and improve the size. In this case, even though the power consumption increases, the time delay can be controlled across an improved bandwidth of approximately 10 GHz. Moreover, the circuit demonstrates a 1-dB compression point \(P_{1\mathrm{{dB}}}\) of 18 dBm. The proposed all-pass filter is simulated in TSMC 180-nm CMOS process parameters.

Keywords

All-pass filter Delay Wideband Delay–bandwidth product Linearity Active inductor 

Notes

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and Innovation (project DPI2013-47799- C2-2-R).

References

  1. 1.
    P. Ahmadi, B. Maundy, A.S. Elwakil, L. Belostotski, A. Madanayake, A new 2nd-order all-pass filter in 130-nm CMOS. IEEE Trans. Circuits Syst. II: Express Br. 63(3), 249–253 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Ahmadi, M.H. Taghavi, L. Belostotski, A. Madanayake, 10-GHz current-mode 1st-and 2nd-order allpass filters on 130nm CMOS, in IEEE 56th international midwest symposium on circuits and systems (MWSCAS), pp. 1–4 (2013)Google Scholar
  3. 3.
    J. Buckwalter, A. Hajimiri, An active analog delay and the delay reference loop, in IEEE radio frequency integrated circuits (RFIC) systems, Digest of Papers, pp. 17–20 (2004)Google Scholar
  4. 4.
    Y. Chen, W. Li, Compact and broadband variable true-time delay line with DLL-based delay-time control. Circuits Syst. Signal Process. 37(3), 1007–1027 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Chen, W. Li, An ultra-wideband pico-second true-time-delay circuit with differential tunable active inductor. Analog Integr. Circuits Signal Process. 91(1), 9–19 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Cakir, U. Cam, O. Cicekoglu, Novel allpass filter configuration employing single OTRA. IEEE Trans. Circuits Syst. II: Express Br. 52(3), 122–125 (2005)CrossRefGoogle Scholar
  7. 7.
    C.M. Chang, Current mode allpass/notch and bandpass filter using single CCII. Electron. Lett. 27(20), 1812–1813 (1991)CrossRefGoogle Scholar
  8. 8.
    F. Carreto-Castro, J. Silva-Martinez, R. Murphy-Arteaga, RF low-noise amplifiers in BiCMOS technologies. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 46(7), 974–977 (1999)CrossRefGoogle Scholar
  9. 9.
    G. Gurun, J.S. Zahorian, A. Sisman, M. Karaman, P.E. Hasler, F.L. Degertekin, An analog integrated circuit beamformer for high frequency medical ultrasound imaging. IEEE Trans. Biomed. Circuits Syst. 6(5), 454–467 (2012)CrossRefGoogle Scholar
  10. 10.
    S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, Frequency limitations of first-order gm-RC all-pass delay circuits. IEEE Trans. Circuits Syst. II: Express Br. 60(9), 572–576 (2013)CrossRefGoogle Scholar
  11. 11.
    S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, Compact cascadable gm-C all-pass true time delay cell with reduced delay variation over frequency. IEEE J. Solid-State Circuits 50(3), 693–703 (2015)CrossRefGoogle Scholar
  12. 12.
    W. Liu, S. Weiss, Wideband Beamforming Concepts and Techniques (Wiley, New York, 2010)CrossRefGoogle Scholar
  13. 13.
    I. Mondal, N. Krishnapura, A 2 GHz bandwidth, 0.25–1.7 ns true-time-delay element using a variable-order all-pass filter architecture in 0.13 \(\mu \)m CMOS. IEEE J. Solid-State Circuits 52(8), 2180–2193 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Schwartz, I. Arnedo, M. Laso, T. Lopetegi, J. Azana, D. Plant, An electronic UWB continuously tunable time-delay system with nanosecond delays. IEEE Microw. Wirel. Compon. Lett. 18(2), 103–105 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Saberkari, S. Ziabakhsh, H. Martinez, E. Alarcon, Active inductor-based tunable impedance matching network for RF power amplifier application. Integr. VLSI J. 52, 301–308 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Saberkari, Sh Kazemi, V. Shirmohammadli, M.C.E. Yagoub, Gm-boosted flat gain UWB low noise amplifier with active inductor-based input matching network. Integr. VLSI J. 52, 323–333 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Toker, S. Ozoguz, O. Cicekoglu, C. Acar, Current-mode allpass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 47(9), 949–954 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Ulusoy, B. Schleicher, H. Schumacher, A tunable differential all-pass filter for UWB true time delay and phase shift applications. IEEE Microw. Wirel. Compon. Lett. 21(9), 462–464 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Wijenayake, Y. Xu, A. Madanayake, L. Belostotski, L. Bruton, RF analog beamforming fan filters using CMOS all-pass time delay approximations. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(5), 1061–1073 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Zhou, A. Safarian, P. Heydari, CMOS wideband analogue delay stage. Electron. Lett. 42(21), 1213–1214 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Diagonal-Besòs Campus, Eastern Barcelona School of Engineering (EEBE)BarcelonaSpain
  2. 2.Department of Electronics EngineeringTechnical University of Catalonia–BarcelonaTech (UPC)BarcelonaSpain
  3. 3.Department of Electrical EngineeringUniversity of GuilanRashtIran

Personalised recommendations