Advertisement

Fast Reconstruction of 3D Images Using Charlier Discrete Orthogonal Moments

  • Hicham KarmouniEmail author
  • Tarik Jahid
  • Mhamed Sayyouri
  • Abdeslam Hmimid
  • Hassan Qjidaa
Article
  • 23 Downloads

Abstract

We propose a new algorithm for accelerating the computation time of Charlier discrete orthogonal moments for three-dimensional (3D) images, based on two fundamental notions: The first is a new representation of 3D images called image cuboid representation (ICR) in which the 3D image is decomposed into a set of cuboids of the same gray level instead of voxels, enabling a considerable reduction in both the amount of treated voxels and the computation time of Charlier moments. The second is a matrix calculation of the Charlier moments instead of direct or recursive calculations. The significant reduction in the computation time for Charlier moments, in combination with the ICR method, motivated the development of this new method for 3D image reconstruction. Simulation results confirm the effectiveness of the proposed method in terms of the calculation time of 3D Charlier moments as well as the speed and quality of image reconstruction.

Keywords

3D Charlier moments 3D image cuboid representation 3D image reconstruction Matrix computation 

Notes

Acknowledgements

This work was supported in part by a grant from Moroccan pole of Competence STIC (Science and Technology of Information and Communication). We also thank the anonymous referees for their helpful comments and suggestions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    S.H. Abdulhussain, A.R. Ramli, S.A.R. Al-Haddad, B.M. Mahmmod, W.A. Jassim, Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vis. 60(3), 285–303 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K.-H. Chang, R. Paramesran, B. Honarvar, C.-L. Lim, Efficient hardware accelerators for the computation of Tchebichef moments. IEEE Trans. Circuits Syst. Video Technol. 22(3), 414–425 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Farokhi, U.U. Sheikh, J. Flusser, B. Yang, Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. 316, 234–245 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Flusser, T. Suk, B. Zitova, 2D and 3D Image Analysis by Moments (Wiley, London, 2016)CrossRefzbMATHGoogle Scholar
  5. 5.
    J. Flusser, T. Suk, Pattern recognition by affine moment invariants. Pattern Recognit. 26, 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Fu, J.-Z. Zhou, Y.-H. Li, B. Peng, L.-Y. Liu, J.-Q. Wen, Novel recursive and symmetric algorithm of computing two kinds of orthogonal radial moments. Image Sci. J. 56(6), 333–341 (2008)CrossRefGoogle Scholar
  7. 7.
    M.S. Hickman, Geometric moments and their invariants. J. Math. Imaging Vis. 44(3), 223–235 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J. Electron. Imaging 23(1), 013026 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using novel set of Charlier moment invariants. WSEAS Trans. Signal Process 10(1), 156–167 (2014)zbMATHGoogle Scholar
  10. 10.
    A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognit. 48, 509–521 (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    B. Honarvar, R. Paramesran, C.-L. Lim, The fast-recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digit. Signal Process. 23(5), 1738–1746 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Honarvar, J. Flusser, Fast computation of Krawtchouk moments. Inf. Sci. 288, 73–86 (2014)CrossRefzbMATHGoogle Scholar
  13. 13.
    K.M. Hosny, Image representation using accurate orthogonal Gegenbauer moments. Pattern Recognit. Lett. 32(6), 795–804 (2011)CrossRefGoogle Scholar
  14. 14.
    K.M. Hosny, Fast computation of accurate Gaussian–Hermite moments for image processing applications. Digit. Signal Proc. 22(3), 476–485 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefzbMATHGoogle Scholar
  16. 16.
  17. 17.
    T. Jahid, A. Hmimid, H. Karmouni, M. Sayyouri, H. Qjidaa, A. Rezzouk, Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77(15), 19811–19831 (2017)CrossRefGoogle Scholar
  18. 18.
    A.K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, 1989)zbMATHGoogle Scholar
  19. 19.
    H. Karmouni, A. Hmimid, T. Jahid, M. Sayyouri, H. Qjidaa, A. Rezzouk, Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. (2018).  https://doi.org/10.1007/s00034-018-0755-2 Google Scholar
  20. 20.
    M.K. Mandal, T. Aboulnasr, S. Panchanathan, Image indexing using moments and wavelets. IEEE Trans. Consum. Electron. 42(3), 557–565 (1996)CrossRefGoogle Scholar
  21. 21.
    A.F. Nikiforov, S.K. Suslov, B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, New York, 1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis, Efficient and accurate computation of geometric moments on gray–scale images. Pattern Recognit. 41(6), 1895–1904 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    G.A. Papakostas, D.E. Koulouriotis, E.G. Karakasis, A unified methodology for the efficient computation of discrete orthogonal image moments. Inf. Sci. 179, 3619–3633 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Rahmalan, N.A. Abu, S.L. Wong, Using Tchebichef moment for fast and efficient image compression. Pattern Recognit. Image Anal. 20, 505–512 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Sayyouri, A. Hmimid, H. Qjidaa, Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11), 2381–2394 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34(3), 875–900 (2015)CrossRefzbMATHGoogle Scholar
  27. 27.
    M. Sayyouri, A. Hmimid, H. Qjidaa, Image analysis using separable discrete moments of Charlier–Hahn. Multimed. Tools Appl. 75(1), 547–571 (2016)CrossRefzbMATHGoogle Scholar
  28. 28.
    H. Shu, H. Zhang, B. Chen, P. Haigron, L. Luo, Fast computation of Tchebichef moments for binary and grayscale images. IEEE Trans. Image Process. 19(12), 3171–3180 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    I.M. Spiliotis, B.G. Mertzios, Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7(11), 1609–1615 (1998)CrossRefGoogle Scholar
  30. 30.
    M.R. Teague, Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.D. Tsougenis, G.A. Papakostas, D.E. Koulouriotis, Image watermarking via separable moments. Multimed. Tools Appl. 74, 3985–4012 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Upneja, C. Singh, Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recognit. 48(5), 1836–1843 (2015)CrossRefzbMATHGoogle Scholar
  33. 33.
    G. Wang, S. Wang, Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39(1), 47–56 (2006)CrossRefGoogle Scholar
  34. 34.
    C.-Y. Wee, R. Paramesran, Derivation of blur-invariant features using orthogonal Legendre moments. IET Comput. Vis. 1(2), 66–77 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Wu, J.L. Coatrieux, H. Shu, New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math. Probl. Eng. 2013, 813606 (2013)MathSciNetGoogle Scholar
  36. 36.
    H. Wu, S. Yan, Bivariate Hahn moments for image reconstruction. Int. J. Appl. Math. Comput. Sci. 24(2), 417–428 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    P.-T. Yap, R. Paramesran, S.-H. Ong, Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)CrossRefGoogle Scholar
  38. 38.
    L. Zhang, W.-W. Xiao, Z. Ji, Local affine transform invariant image watermarking by Krawtchouk moment invariants. IET Inf. Secur. 1(3), 97–105 (2007)CrossRefGoogle Scholar
  39. 39.
    H. Zhang, H. Shu, G.-N. Han, G. Coatrieux, L. Luo, J.L. Coatrieux, Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    H. Zhu, M. Liu, H. Ji, Y. Li, Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal. Appl. 3(13), 309–319 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Zhu, Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recognit. 45, 1540–1558 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CED-ST, STIC, Laboratory of Electronic Signals and Systems of Information LESSI, Faculty of Science Dhar El MahrezUniversity Sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Laboratory of Engineering Sciences for Energy, National School of Applied Sciences, d’El JadidaChouaib Doukkali UniversityEl JadidaMorocco

Personalised recommendations