Circuits, Systems, and Signal Processing

, Volume 38, Issue 7, pp 2910–2930 | Cite as

A Wideband High Linearity and Low-Noise CMOS Active Mixer Using the Derivative Superposition and Noise Cancellation Techniques

  • Pouya Solati
  • Mohammad YavariEmail author


Using the derivative superposition and noise cancellation techniques, a high linearity, enhanced conversion gain, and low noise figure (NF) CMOS active mixer is presented for wideband applications. The third-order input intercept point (IIP3) of the proposed mixer is improved by cancelling the intrinsic second-order derivative transconductance (g m ) of the main transistor. This is achieved by using an auxiliary transistor which is biased in the weak inversion region to create g m with the same amplitude and opposite sign relative to the main transistor. A linear path consisting of two parallel transistors is utilized to cancel the thermal noise of the input transistors. A constant transconductance (Gm) bias circuit is employed to achieve robust performance against process, voltage and temperature variations. Detailed analysis of the proposed mixer is presented, and extensive simulation results are provided to evaluate the efficiency of the utilized techniques. The simulated mixer operates from 500 MHz to 3.1 GHz RF input frequency. Post-layout circuit-level simulation results using a 90-nm RF CMOS process with Spectre-RF reveal that the IIP3 and conversion gain of the proposed mixer are improved about 6.1 dB and 6.2 dB, respectively, compared to the conventional CMOS active mixer. Also, the NF of the proposed mixer is decreased about 2 dB. The simulated S11 is less than − 12 dB in whole RF range. It consumes 13.9 mW from a single 1.1 V power supply which is approximately 60% more than that of the conventional active mixer.


CMOS active mixers Third-order input intercept point (IIP3) Noise figure Conversion gain Intermodulation Linearity Derivative superposition Noise cancellation Gilbert cell 



This work has been financially supported by Iran National Science Foundation (INSF).


  1. 1.
    A. Amirabadi, M. Chehelcheraghi, M. Kamarei, High IIP3 and low-noise CMOS mixer using non-linear feedback technique. Circuits Syst. Signal Proc. 30(4), 721–739 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Asghari, M. Yavari, Using interaction between two nonlinear systems to improve IIP3 in active mixers. Electron. Lett. 50(2), 76–77 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Asghari, M. Yavari, Using the gate–bulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 1, 223–232 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Asghari, M. Yavari, An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage. Microelectron. J. 50, 44–49 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Beigizadeh, A. Nabavi, Design of a high gain and highly linear common-gate UWB mixer in K-band. Analog Integr. Circuits Signal Process. 78(2), 501–509 (2014)CrossRefGoogle Scholar
  6. 6.
    S.C. Blaakmeer, E.A. Klumperink, D.M. Leenaerts, B. Nauta, The Blixer, a wideband balun-LNA-I/Q-mixer topology. IEEE J. Solid State Circuits 43(12), 2706–2715 (2008)CrossRefGoogle Scholar
  7. 7.
    T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuit Design, 2nd edn. (Wiley, New York, 2012)Google Scholar
  8. 8.
    M.M. Esmael, M. Mobarak, M.A. Abdalla, 9–16 GHz high-linearity I/Q active mixer in 0.13-μm CMOS, in National Radio Science Conference (NRSC), Egypt (2016), pp. 362–367Google Scholar
  9. 9.
    B. Guo, H. Wang, G. Yang, A wideband merged CMOS active mixer exploiting noise cancellation and linearity enhancement. IEEE Trans. Microw. Theory Tech. 62(9), 2084–2091 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Gupta, A.A. Kumar, A. Dutta, S.G. Singh, Design of subthreshold wide band down conversion mixer, in IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (2013), pp. 200–203Google Scholar
  11. 11.
    S.K. Hampel, O. Schmitz, M. Tiebout, I. Rolfes, Inductorless low-voltage and low-power wideband mixer for multistandard receivers. IEEE Trans. Microw. Theory Tech. 58(5), 1384–1390 (2010)CrossRefGoogle Scholar
  12. 12.
    H.-G. Han, T.-W. Kim, +34 dBm IIP3, 0.4–1 GHz common-drain stage with its high frequency analysis. Electron. Lett. 48(17), 1064–1065 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.-D. Jiang, R.-X. Zhang, C.-Q. Shi, Z.-S. Lai, A 76-dBm IIP2 down-conversion mixer for TD-SCDMA/RFID applications. Analog Integr. Circuits Signal Process. 72(2), 129–139 (2012)CrossRefGoogle Scholar
  14. 14.
    T.-H. Jin, T.-W. Kim, A 5.5-mW +9.4-dBm IIP3 1.8-dB NF CMOS LNA employing multiple gated transistors with capacitance desensitization. IEEE Trans. Microw. Theory Tech. 58(10), 2529–2537 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.M. Kim et al., A 0.6-V +4 dBm IIP3 LC folded cascode CMOS LNA with gm linearization. IEEE Trans. Circuits Syst. II Exp. Briefs 60(3), 122–126 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Lee, M. Lee, Low flicker noise, odd-phase master LO active mixer using a low switching frequency scheme. IEEE J. Solid State Circuits 50(6), 2281–2293 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Lee, I. Nam, I. Kwon, J. Gil, K. Han, S. Park, B.-I. Seo, The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Trans. Electron Devices 52(7), 1415–1422 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Lee, J. Bergervoet, K. Harish, D. Leenaerts, R. Roovers, R. van de Beek et al., A broadband receive chain in 65 nm CMOS, in International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 418–419Google Scholar
  19. 19.
    Y.-S. Lin, M.-H. Kao, H.-R. Pan, K.-S. Lan, A 90–96 GHz CMOS down-conversion mixer with high conversion gain and excellent LO–RF isolation. Analog Integr. Circuits Signal Process. 93(1), 49–59 (2017)CrossRefGoogle Scholar
  20. 20.
    B. Liu, F. Fan, H. Zhang, C. Zeng, A wideband down conversion mixer with dual cross-coupled loops for software defined radio, in IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 990–993Google Scholar
  21. 21.
    S. Lou, H.C. Luong, A linearization technique for RF receiver front-end using second-order intermodulation injection. IEEE J. Solid State Circuits 43(11), 2404–2412 (2008)CrossRefGoogle Scholar
  22. 22.
    L. Ma, Z. Wang, J. Xu, A 1-V current-reused wideband current-mirror mixer in 180-nm CMOS with high IIP2. Circuits Syst. Signal Process. 36(5), 1806–1817 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Manstretta, M. Brandolini, F. Svelto, Second-order intermodulation mechanisms in CMOS downconverters. IEEE J. Solid State Circuits 38(3), 394–406 (2003)CrossRefGoogle Scholar
  24. 24.
    B. Mazhabjafari, M. Yavari, A UWB CMOS low-noise amplifier with noise reduction and linearity improvement techniques. Microelectron. J. 46(2), 198–206 (2015)CrossRefGoogle Scholar
  25. 25.
    M.M. Mohsenpour, C.E. Saavedra, Highly linear reconfigurable mixer designed for environment-aware receiver, in IEEE International Symposium on Circuits and Systems (ISCAS) (2017), pp. 1–4Google Scholar
  26. 26.
    M. Mollaalipour, H. Miar-Naimi, An improved high linearity active CMOS mixer: design and Volterra series analysis. IEEE Trans. Circuits Syst. I Regul. Papers 60(8), 2092–2103 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D.-H. Na, T.-W. Kim, A 1.2 V, 0.87–3.7 GHz wideband low-noise mixer using a current mirror for multiband application. IEEE Microw. Wirel. Compon. Lett. 22(2), 91–93 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Park, C.H. Lee, B.S. Kim, J. Laskar, Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Trans. Microw. Theory Tech. 54(12), 4372–4380 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Pasca, V. Chironi, S. D’Amico, M. De Matteis, A. Baschirotto, A 12 dBm IIP3 reconfigurable mixer for high/low band IR-UWB receivers, in IEEE Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2013), pp. 81–84Google Scholar
  30. 30.
    F. Plessas, G. Souliotis, R. Makri, A 76–84 GHz CMOS 4x subharmonic mixer with internal phase correction. IEEE Trans. Circuits Syst. I Regul. Papers 65(7), 2083–2096 (2018)CrossRefGoogle Scholar
  31. 31.
    P.Z. Rao, T.Y. Chang, C.P. Liang, S.J. Chung, A wideband CMOS mixer with feedforward compensated differential transconductor, in IEEE International Symposium on Circuits and Systems (2007), pp. 3892–3895Google Scholar
  32. 32.
    P.Z. Rao, T.Y. Chang, C.P. Liang, S.J. Chung, An ultra-wideband high-linearity CMOS mixer with new wideband active baluns. IEEE Trans. Microw. Theory Tech. 57(9), 2184–2192 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)Google Scholar
  34. 34.
    B. Razavi, RF Microelectronics (Prentice Hall, London, 2012)Google Scholar
  35. 35.
    P. Solati, M. Yavari, A wide-band CMOS active mixer with linearity improvement technique, in Iranian Conference on Electrical Engineering (ICEE) (2017), pp. 271–275Google Scholar
  36. 36.
    M.T. Terrovitis, R.G. Meyer, Intermodulation distortion in current-commutating CMOS mixers. IEEE J. Solid State Circuits 35(10), 1461–1473 (2000)CrossRefGoogle Scholar
  37. 37.
    P. Upadhyaya, M. Rajashekharaiah, D. Heo, A 5.6-GHz CMOS doubly balanced sub-harmonic mixer for direct conversion-zero IF receiver, in IEEE Microelectronics and Electron Devices Workshop (2004), pp. 129–130Google Scholar
  38. 38.
    Q. Wan, D. Xu, H. Zho, J. Dong, A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst. Signal Process. 37(9), 3671–3684 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Zhang, E. Sánchez-Sinencio, Linearization techniques for CMOS low noise amplifiers: a tutorial. IEEE Trans. Circuits Syst. I Regul. Paper 58(1), 22–36 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Integrated Circuits Design Laboratory, Department of Electrical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations