Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 7, pp 3251–3268 | Cite as

Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency Signals

  • Siyu Liu
  • Feng DingEmail author
  • Ling Xu
  • Tasawar Hayat
Article

Abstract

In this paper, we consider the parameter estimation problem of dual-frequency signals disturbed by stochastic noise. The signal model is a highly nonlinear function with respect to the frequencies and phases, and the gradient method cannot obtain the accurate parameter estimates. Based on the Newton search, we derive an iterative algorithm for estimating all parameters, including the unknown amplitudes, frequencies, and phases. Furthermore, by using the parameter decomposition, a hierarchical least squares and gradient-based iterative algorithm is proposed for improving the computational efficiency. A gradient-based iterative algorithm is given for comparisons. The numerical examples are provided to demonstrate the validity of the proposed algorithms.

Keywords

Iterative algorithm Signal modeling Hierarchical identification Least squares Newton search Gradient search 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61873111) and the 111 Project (B12018).

References

  1. 1.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal—part 1: fundamentals. Proc. IEEE 80(4), 520–538 (1992)CrossRefGoogle Scholar
  2. 2.
    Y. Cao, P. Li, Y. Zhang, Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing. Future Gener. Comput. Syst. 88, 279–283 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Cao, L.C. Ma, S. Xiao et al., Standard analysis for transfer delay in CTCS-3. Chin. J. Electron. 26(5), 1057–1063 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Cao, G. Wei, F.J. Chen, An exact analysis of modified covariance frequency estimation algorithm based on correlation of single-tone. Signal Process. 92(11), 2785–2790 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Cao, Y. Wen, X. Meng, W. Xu, Performance evaluation with improved receiver design for asynchronous coordinated multipoint transmissions. Chin. J. Electron. 25(2), 372–378 (2016)CrossRefGoogle Scholar
  6. 6.
    G.Y. Chen, M. Gan, C.L.P. Chen et al., A regularized variable projection algorithm for separable nonlinear least squares problems. IEEE Trans. Autom. Control. 64(2), 1 (2019).  https://doi.org/10.1109/TAC.2018.2838045 MathSciNetCrossRefGoogle Scholar
  7. 7.
    G.Y. Chen, M. Gan, F. Ding et al., Modified Gram–Schmidt method-based variable projection algorithm for separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. 1, 1 (2018).  https://doi.org/10.1109/TNNLS.2018.2884909 CrossRefGoogle Scholar
  8. 8.
    M.Z. Chen, D.Q. Zhu, A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system. IEEE Trans. Cogn. Dev. Syst. PP, 1 (2018).  https://doi.org/10.1109/TCDS.2018.2866984 Google Scholar
  9. 9.
    J.L. Ding, Recursive and iterative least squares parameter estimation algorithms for multiple-input–output-error systems with autoregressive noise. Circuits Syst. Signal Process. 37(5), 1884–1906 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.L. Ding, The hierarchical iterative identification algorithm for multi-input–output-error systems with autoregressive noise. Complexity (2017)  https://doi.org/10.1155/2017/5292894 (Article ID 5292894)
  11. 11.
    F. Ding, H.B. Chen, L. Xu et al., A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Frankl. Inst. 355(8), 3737–3752 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    F. Ding, L. Xu, F.E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory Appl. 12(7), 892–899 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Gan, C.L.P. Chen, G.Y. Chen et al., On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. 48(10), 2866–2874 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Gan, H.X. Li, H. Peng, A variable projection approach for efficient estimation of RBF-ARX model. IEEE Trans. Cybern. 45(3), 462–471 (2015)CrossRefGoogle Scholar
  15. 15.
    Z.W. Ge, F. Ding, L. Xu, A. Alsaedi, T. Hayat, Gradient-based iterative identification method for multivariate equation-error autoregressive moving average systems using the decomposition technique. J. Frankl. Inst. 356, 1–19 (2019).  https://doi.org/10.1016/j.jfranklin.2018.12.002 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    F.Z. Geng, S.P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems. Appl. Math. Lett. 77, 49–56 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    P.C. Gong, W.Q. Wang, F.C. Li et al., Sparsity-aware transmit beamspace design for FDA-MIMO radar. Signal Process. 144, 99–103 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Gu, F. Ding, J.H. Li, States based iterative parameter estimation for a state space model with multi-state delays using decomposition. Signal Process. 106, 294–300 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Gu, J. Liu, X. Li, State space model identification of multirate processes with time-delay using the expectation maximization. J. Frankl. Inst. 356, 1–17 (2019).  https://doi.org/10.1016/j.jfranklin.2018.08.030 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Hou, Amplitude and frequency estimator of a sinusoid. IEEE Trans. Autom. Control 50(6), 855–858 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Hou, Estimation of sinusoidal frequencies and amplitudes using adaptive identifier and observer. IEEE Trans. Autom. Control 52(3), 493–499 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M. Hou, Parameter identification of sinusoids. IEEE Trans. Autom. Control 57(2), 467–472 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Y.B. Hu, Q. Zhou, H. Yu, Z. Zhou, F. Ding, Two-stage generalized projection identification algorithms for controlled autoregressive systems. Circuits Syst. Signal Process. 38, 1–17 (2019).  https://doi.org/10.1007/s00034-018-0996-0 CrossRefGoogle Scholar
  24. 24.
    X.Y. Li, B.Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 86, 194–199 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    F.B. Li, L.G. Wu, P. Shi, C.C. Lim, State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J.H. Li, W. Zheng, J.P. Gu, L. Hua, A recursive identification algorithm for Wiener nonlinear systems with linear state-space subsystem. Circuits Syst. Signal Process. 37(6), 2374–2393 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    X. Li, D.Q. Zhu, An adaptive SOM neural network method for distributed formation control of a group of AUVs. IEEE Trans. Ind. Electron. 65(10), 8260–8270 (2018)Google Scholar
  28. 28.
    Q.Y. Liu, F. Ding, Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits Syst. Signal Process. 38, 1–21 (2019).  https://doi.org/10.1007/s00034-018-0871-z CrossRefGoogle Scholar
  29. 29.
    S.Y. Liu, L. Xu, F. Ding, Iterative parameter estimation algorithms for dual-frequency signal models. Algorithms 10(4), 1–13 (2017).  https://doi.org/10.3390/a10040118 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    P.P. Liu, S.G. Zhang, Newton’s method for solving a class of nonlinear matrix equations. J. Comput. Appl. Math. 255, 254–267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    P. Ma, F. Ding, Q.M. Zhu, Decomposition-based recursive least squares identification methods for multivariate pseudolinear systems using the multi-innovation. Int. J. Syst. Sci. 49(5), 920–928 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Nafar, G.B. Gharehpetian, T. Niknam, Using modified fuzzy particle swarm optimization algorithm for parameter estimation of surge arresters model. Int. J. Innov. Comput. Inf. Control 8(1B), 567–581 (2012)Google Scholar
  33. 33.
    J. Pan, W. Li, H.P. Zhang, Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int. J. Control Autom. Syst. 16(6), 2878–2887 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Pan, H. Ma, X. Jiang, et al., Adaptive gradient-based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique. Complexity (2018).  https://doi.org/10.1155/2018/9598307 (Article ID 9598307)
  35. 35.
    H. Ramos, M.T.T. Monteiro, A new approach based on the Newton’s method to solve systems of nonlinear equations. J. Comput. Appl. Math. 318, 3–13 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Z.H. Rao, C.Y. Zeng, M.H. Wu et al., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans. Internet Inf. Syst. 12(1), 413–435 (2018)Google Scholar
  37. 37.
    P. Stoica, H.B. Li, J. Li, Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans. Signal Process. 48(2), 338–352 (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    L.J. Wan, F. Ding, Decomposition-based gradient iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 38, 1–20 (2019).  https://doi.org/10.1007/s00034-018-1014-2 CrossRefGoogle Scholar
  39. 39.
    Y. Wang, Y. Si, B. Huang, S.X. Ding, Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017. Can. J. Chem. Eng. 96(10), 2073–2085 (2018)CrossRefGoogle Scholar
  40. 40.
    L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1–12 (2017).  https://doi.org/10.1177/1687814017730003 Google Scholar
  42. 42.
    L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    L. Xu, F. Ding, Parameter estimation for control systems based on impulse responses. Int. J. Control Autom. Syst. 15(6), 2471–2479 (2017)CrossRefGoogle Scholar
  44. 44.
    L. Xu, F. Ding, Y. Gu et al., A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Xu, F. Ding, E.F. Yang, Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. (2019).  https://doi.org/10.1007/s11071-018-4677-0
  46. 46.
    G.H. Xu, Y. Shekofteh, A. Akgul et al., A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy 20(2), 1–23 (2018).  https://doi.org/10.3390/e20020086 Google Scholar
  47. 47.
    L. Xu, W.L. Xiong et al., Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)CrossRefGoogle Scholar
  48. 48.
    C. Yang, G. Wei, A noniterative frequency estimator with rational combination of three spectrum lines. IEEE Trans. Signal Process. 59(10), 5065–5070 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    C. Yin, S.S. Wu et al., Design and stability analysis of multivariate extremum seeking with Newton method. J. Frankl. Inst. 355(4), 1559–1578 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Q.G. Zhang, The Rife frequency estimation algorithm based on real-time FFT. Signal Process. 25(6), 1002–1004 (2009)Google Scholar
  51. 51.
    Y.Z. Zhang, Y. Cao, Y.H. Wen, L. Liang, F. Zou, Optimization of information interaction protocols in cooperative vehicle-infrastructure systems. Chin. J. Electron. 27(2), 439–444 (2018)CrossRefGoogle Scholar
  52. 52.
    X. Zhang, F. Ding, F.E. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    X. Zhang, F. Ding, L. Xu et al., State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018)MathSciNetCrossRefGoogle Scholar
  54. 54.
    X. Zhang, L. Xu, F. Ding et al., Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Frankl. Inst. 355(6), 3079–3103 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    W.H. Zhang, L. Xue, X. Jiang, Global stabilization for a class of stochastic nonlinear systems with SISS-like conditions and time delay. Int. J. Robust Nonlinear Control 28(13), 3909–3926 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    N. Zhao, R. Liu, Y. Chen et al., Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks. Wirel. Netw. 24(8), 3029–3044 (2018)CrossRefGoogle Scholar
  57. 57.
    D. Zhao, Y. Wang, Y. Li, S.X. Ding, H-infinity fault estimation for two-dimensional linear discrete time-varying systems based on Krein space method. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2070–2079 (2018)CrossRefGoogle Scholar
  58. 58.
    Z.P. Zhou, X.F. Liu, State and fault estimation of sandwich systems with hysteresis. Int. J. Robust Nonlinear Control 28(13), 3974–3986 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things EngineeringJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.School of Electrical and Electronic EngineeringHubei University of TechnologyWuhanPeople’s Republic of China
  3. 3.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations