Advertisement

Nonnegative Matrix Factorization with Fixed L2-Norm Constraint

  • Zuyuan Yang
  • Yifei Hu
  • Naiyao LiangEmail author
  • Jun Lv
Article
  • 10 Downloads

Abstract

Nonnegative matrix factorization (NMF) is a very attractive scheme in learning data representation, and constrained NMF further improves its ability. In this paper, we focus on the L2-norm constraint due to its wide applications in face recognition, hyperspectral unmixing, and so on. A new algorithm of NMF with fixed L2-norm constraint is proposed by using the Lagrange multiplier scheme. In our method, we derive the involved Lagrange multiplier and learning rate which are hard to tune. As a result, our method can preserve the constraint exactly during the iteration. Simulations in both computer-generated data and real-world data show the performance of our algorithm.

Keywords

Nonnegative matrix factorization Multiplicative updates L2-norm Constrained NMF 

Notes

References

  1. 1.
    AT&T Laboratories Cambridge, ORL Face Database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (2002)
  2. 2.
    M.W. Berry, M. Brown, A.N. Langvill, V.P. Pauca, R.J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Bertin, R. Badeau, E. Vincent, Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans. Audio Speech Lang. Process. 18(3), 538–549 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)Google Scholar
  5. 5.
    N. Gillis, F. Glineur, A multilevel approach for nonnegative matrix factorization. J. Comput. Appl. Math. 236(7), 1708–1723 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Gersho, R.M. Gray, Vector quantization and signal compression, in Springer International, vol. 159(1), pp. 407–485 (1992)Google Scholar
  7. 7.
    F. Gianfelici, C. Turchetti, P. Crippa, A non-probabilistic recognizer of stochastic signals based on KLT. Signal Process. 89(4), 422–437 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Goldfarb, Z. Wen, W. Yin, A curvilinear search method for the p-harmonic flow on spheres. SIAM J. Imaging Sci. 2(1), 84–109 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(1), 1457–469 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    I. Jolliffe, Principle Component Analysis, 2nd edn. (Springer, New York, 2004)Google Scholar
  11. 11.
    M. Lyons, J. Budynek, S. Akamatsu, Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in Computer Vision and Pattern Recognition, pp. 207–212 (2001)Google Scholar
  13. 13.
    P. Luo, J. Peng, J. Fan, P. Luo, J. Peng, l(2,1) norm and Hessian regularized non-negative matrix factorization with discriminability for data representation. Appl. Sci. 7(10), 1–14 (2017)CrossRefGoogle Scholar
  14. 14.
    D.D. Lee, H.S. Seung, Algorithms for nonnegative matrix factorization. Adv. Neural Inf. Process. Syst. 13(6), 556–562 (2000)Google Scholar
  15. 15.
    D.D. Lee, H.S. Seung, Learning the parts of objects by nonnegative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  16. 16.
    Z. Li, J. Tang, X. He, Robust structured nonnegative matrix factorization for image representation. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1947–1960 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    MIT Center For Biological and Computation Learning, CBCL Face Database #1. http://cbcl.mit.edu/software-datasets/FaceData2.html (2005)
  18. 18.
    Y. Meng, R. Shang, L. Jiao, W. Zhang, Y. Yuan, S. Yang, Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering. Neurocomputing 290, 87–99 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Shahnaz, M.W. Berry, V.P. Pauca, R.J. Plemmons, Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006)CrossRefGoogle Scholar
  20. 20.
    L.A. Vese, S.J. Osher, Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40(6), 2085–2104 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Wang, H. Lu, On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Process. 93(6), 1608–1623 (2013)CrossRefGoogle Scholar
  22. 22.
    D. Wang, J. Liu, Y. Gao, J. Yu, C. Zheng, An NMF-L2, L1-norm constraint method for characteristic gene selection. Plos One 11(7), 1–12 (2016)Google Scholar
  23. 23.
    Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2), 394–434 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Y. Xu, Z. Zhong, J. Yang, J. You, D. Zhang, A new discriminative sparse representation method for robust face recognition via l2 regularization. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2233–2242 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    N. Yuvaraj, P. Vivekanandan, An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data, in International Conference on Information Communication and Embedded Systems, pp. 761–768 (2013)Google Scholar
  26. 26.
    Z. Yang, Y. Xiang, K. Xie, Y. Lai, Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 948–960 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 20(4), 1112–1125 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Z. Yang, Y. Zhang, Y. Xiang, W. Yan, S. Xie, Non-negative matrix factorization with dual constraints for image clustering. IEEE Trans. Syst. Man Cybern. Syst.  https://doi.org/10.1109/TSMC.2018.2820084 (to appear)
  29. 29.
    Z. Zhang, S. Liao, H. Zhang, S. Wang, Y. Wang, Bilateral filter regularized L2 sparse nonnegative matrix factorization for hyperspectral unmixing. Remote Sens. 10(6), 1–22 (2018)Google Scholar
  30. 30.
    G. Zhou, Z. Yang, S. Xie, J. Yang, Online blind source separation using incremental nonnegative matrix factorization with volume constraint. IEEE Trans. Neural Netw. 22(4), 550–60 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of IoT Information Technology, School of AutomationGuangdong University of TechnologyGuangzhouChina

Personalised recommendations