Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 7, pp 3356–3369 | Cite as

A Simple Design of Fractional Delay FIR Filter Based on Binomial Series Expansion Theory

  • Tahar BensouiciEmail author
  • Abdelfatah Charef
  • Assadi Imen
Short Paper
  • 125 Downloads

Abstract

Fractional delay filters modeling non-integer delays are digital filters that ideally have flat group delays. This paper proposes a simple design method of fractional delay FIR filter based on binomial series expansion theory. First, the design technique is based on the binomial series expansion method which is applied to a discrete fractional system to obtain a closed form FIR digital filter which approximates the digital fractional delay operator zm\( (m \in \Re^{ + } ) \). Then, the principal differentiation is used to design fractional delay FIR filter with a broader group delay bandwidth. Finally, numerical examples of fractional delay FIR filter design show that the proposed approach yields better performance compared to the existing techniques.

Keywords

Fractional delay FIR filters Binomial series expansion Discrete fractional system Broader bandwidth 

References

  1. 1.
    T. Bensouici, A. Charef, Approximate realization of digital fractional forward operator using digital IIR filter. Signal Image Video Process. J. 6(3), 411–420 (2012)CrossRefGoogle Scholar
  2. 2.
    T. Bensouici, A. Charef, Fractional Euler analog-to-digital transform. AEÜ Int. J. Electron. Commun. 69(4), 730–735 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Bensouici, A. Charef, I. Assadi, A new approach for the design of fractional delay by an FIR filter. ISA Trans. (2018).  https://doi.org/10.1016/j.isatra.2018.03.021 Google Scholar
  4. 4.
    A. Charef, T. Bensouici, Digital fractional delay implementation based on fractional order system. IET Proc. Signal Process. 5(6), 547–556 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Charef, T. Bensouici, Design of digital FIR variable fractional order integrator and differentiator. Signal Image Video Proc. J. 6(4), 679–689 (2012)CrossRefGoogle Scholar
  6. 6.
    H.H. Dam, Design of variable fractional delay filter with fractional delay constraints. IEEE Signal Process. Lett. 21(11), 1361–1364 (2014)CrossRefGoogle Scholar
  7. 7.
    H.H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients. IEEE Signal Process. Lett. 22(10), 1643–1646 (2015)CrossRefGoogle Scholar
  8. 8.
    T.B. Deng, W. Qin, Improved bi-equiripple variable fractional-delay filters. Sig. Process. 94(5), 300–307 (2014)CrossRefGoogle Scholar
  9. 9.
    T.B. Deng, P. Soontornwong, Delay-error-constrained minimax design of all-pass variable fractional delay digital filters. Sig. Process. 120, 438–447 (2016)CrossRefGoogle Scholar
  10. 10.
    R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edn. (Addison-Wesley, Reading, 1994)zbMATHGoogle Scholar
  11. 11.
    X. Huang, B. Zhang, H. Qin, W. An, Closed-form design of variable fractional-delay FIR filters with low or middle cutoff frequencies. IEEE Tran. Circuits Syst. I 65(2), 628–637 (2018)Google Scholar
  12. 12.
    H. Johansson, A. Eghbali, Two polynomial FIR filter structures with variable fractional delay and phase shift. IEEE Trans. Circuits Syst. I 61(5), 1355–1365 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Kumar, T.K. Rawat, Optimal fractional delay-IIR filter design using cuckoo search algorithm. ISA Trans. 59, 39–54 (2015)CrossRefGoogle Scholar
  14. 14.
    T.I. Laakso, V. Valimaki, M. Karjalainen, U.K. Laine, Splitting the unit delay: tool for fractional delay filter design. IEEE Signal Process. Mag. 13(1), 30–60 (1996)CrossRefGoogle Scholar
  15. 15.
    P. Mohindru, R. Khanna, S.S. Bhatia, New tuning model for rectangular windowed FIR filter using fractional Fourier transform. Signal Image Video Proc. J. 9(4), 761–767 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Olsson, H. Johansson, P. Lowenborg, Delay estimation using adjustable fractional delay all-pass filters, in Proc. 7th Nordic Signal Processing Symposium. Reykjavík, Iceland, June 7–9 (2006), pp. 346–349Google Scholar
  17. 17.
    P. Murphy, A. Krukowski, A. Tarczynski, An efficient fractional sampler delayer for digital beam steering, in Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing. Munich, Germany, April 21–24 (1997), pp. 2245–2248Google Scholar
  18. 18.
    J. Shi, X. Liu, N. Zhang, Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform. Signal Image Video Proc. J. 9(1), 211–220 (2015)CrossRefGoogle Scholar
  19. 19.
    C.C. Tseng, S.L. Lee, Design of fractional delay filter using discrete Fourier transform interpolation method. Sig. Process. 90(4), 1313–1322 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    C.C. Tseng, S.L. Lee, Designs of fixed fractional delay filters using fractional derivative constraints. IEEE Trans. Circuits Syst. II 59(10), 683–687 (2012)CrossRefGoogle Scholar
  21. 21.
    V. Välimäki, H.-M. Lehtonen, T.I. Laakso, Musical signal analysis using fractional delay inverse comb filters, in Proc. 10th Int. Conference on Digital Audio Effects. Bordeaux, France, September 10–15 (2007), pp. 261–268Google Scholar
  22. 22.
    V. Valimaki, A. Haghparast, Fractional delay filter design based on truncated Lagrange interpolation. IEEE Signal Process. Lett. 14(11), 816–819 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Vesma, T. Saramiki, Interpolation filters with arbitrary frequency response for all-digital receivers, in Proc. IEEE Int. Symp. Circuits Syst. Atlanta, GA, USA, May 12–15 (1996), pp 568–571Google Scholar
  24. 24.
    M.M.J. Yekta, Half-band FIR fractional delay filters with closed-form coefficient formulas and modular implementation based on Lagrange interpolators. Sig. Process. 88(12), 2913–2916 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    M.M.J. Yekta, Wideband maximally flat fractional delay allpass filters. Electron. Lett. 46(10), 722–723 (2010)CrossRefGoogle Scholar
  26. 26.
    J.Y. Yu, W.J. Xu, Investigation on the optimization criteria for the design of variable fractional delay filters. IEEE Trans. Circuits Syst. II 60(8), 522–526 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tahar Bensouici
    • 1
    Email author
  • Abdelfatah Charef
    • 2
  • Assadi Imen
    • 2
  1. 1.Département de Télécommunication, Faculté d’Electronique et InformatiqueUniversité USTHBBab-EzzouarAlgeria
  2. 2.Laboratoire de Traitement du Signal Département d’ElectroniqueUniversité des Frères Mentouri Constantine Route Ain El-beyConstantineAlgeria

Personalised recommendations