Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2055–2071 | Cite as

Anti-windup Compensator Synthesis for Sampled-Data Delay Systems

  • Ouarda LamrabetEmail author
  • El Houssaine Tissir
  • Fatima El Haoussi


This paper deals with the problem of synthesizing an anti-windup compensator for time-delay systems subject to actuator saturation, and uncertain sampling period with the known upper bound on the sampling intervals. By incorporating Lyapunov–Krasovskii functional, Jensen’s integral inequality and Wirtingers integral inequality, some sufficient conditions are obtained via LMI formulation. The conditions guarantee the stability of the closed-loop system, an \( H_{\infty } \) norm bound performances and enlarge the estimation of domain of attraction. Finally, to demonstrate the effectiveness of the developed results, simulation examples are provided.


Sampled-data control Anti-windup Time-delay system Actuator saturation 


  1. 1.
    F. Ahmida, E.H. Tissir, A new approach to H∞ filtering for switched T-S fuzzy systems with interval time varying delays and parameter uncertainties. Br. J. Math. Comput. Sci. 6(3), 215–232 (2015)Google Scholar
  2. 2.
    S. Belamfedelalaoui, E.H. Tissir, N. Chaibi, Active queue management based feedback control for TCP with successive delays in single and multiple bottleneck topology. Comput. Commun. 117, 58–70 (2018)Google Scholar
  3. 3.
    F.A. Bender, Delay dependent antiwindup synthesis for time delay systems. Int. J. Intell. Control Syst. 18(1), 1–9 (2013)MathSciNetGoogle Scholar
  4. 4.
    W. Chen, L. Qiu, Stabilization of networked control systems with multirate sampling. Automatica 49, 1528–1537 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    I.K. Dassios, Stability and robustness of singular systems of fractional nabla difference equations. Circuits Syst Signal Process 36(1), 49–64 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    C. Du, C. Yang, F. Li, W. Gui, A novel asynchronous control for artificial delayed markovian jump systems via output feedback sliding mode approach, in IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018), pp. 1–11Google Scholar
  7. 7.
    N. El Fezazi, F. El Haoussi, E.H. Tissir, F. Tadeo, Delay dependent anti-windup synthesis for time-varying delay systems with saturating actuators. Int. J. Comput. Appl. 111(1), 1–6 (2015)Google Scholar
  8. 8.
    N. El Fezazi, F. El Haoussi, E.H. Tissir, T. Alvarez, F. Tadeo, Robust stabilization using LMI techniques of neutral-delay systems subject to input saturation. J. Phys. Conf. Ser. 783, 1–13 (2017)zbMATHGoogle Scholar
  9. 9.
    N. El Fezazi, O. Lamrabet, F. El Haoussi, E.H. Tissir, T. Alvarez, F. Tadeo, Robust controller design for congestion control in TCP/IP routers, in Proceedings of the International Conference on Systems and Control (ICSC), Marrakesh, Morocco, (2016), pp. 243–249Google Scholar
  10. 10.
    N. El Fezazi, E.H. Tissir, F. El Haoussi, T. Alvarez, F. Tadeo, Control based on saturated time-delay systems theory of mach number in wind tunnels. Circuits Syst. Signal Process 37, 1505–1522 (2017)MathSciNetGoogle Scholar
  11. 11.
    N. El Fezazi, F. El Haoussi, E.H. Tissir, T. Alvarez, Design of robust H∞ controllers for congestion control in data networks. J. Frankl. Inst. 354, 7828–7845 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    N. El Fezazi, E.H. Tissir, F. El Haoussi, T. Alvarez, F. Tadeo, Robust stabilization using sampled data strategy of uncertain neutral state delayed systems subject to input limitation. Int. J. Appl. Math. Comput. Sci. 28(1), 111–122 (2018)MathSciNetzbMATHGoogle Scholar
  13. 13.
    N. El Fezazi, F. El Haoussi, E.H. Tissir, T. Alvarez, Congestion control of data network by using anti-windup approach. Int. J. Ecol. Econ. Stat. 39(1), 37–53 (2018)Google Scholar
  14. 14.
    F. El Haoussi, E.H. Tissir, A. Hmamed, F. Tadeo, Stabilization of neutral systems with saturating actuators. J. Control Sci. Eng. 2012, 243–249 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    C. El Kasri, A. Hmamed, E.H. Tissir, F. Tadeo, Robust H∞ filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidimens. Syst. Signal Process. 24(1), 685–706 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    E. Fridman, A. Seuret, J.P. Richard, Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Springer, Berlin, 2003)zbMATHGoogle Scholar
  18. 18.
    L. Hu, J. Lam, Y. Cao, H. Shao, A linear matrix inequality (LMI) approach to robust H2 sampled-data control for linear uncertain systems. IEEE Trans. Syst. Man Cybern. 33(1), 149–155 (2003)Google Scholar
  19. 19.
    L.S. Hua, T. Baia, P. Shib, Z. Wua, Sampled data control of networked linear control systems. Automatica 43, 903–911 (2007)MathSciNetGoogle Scholar
  20. 20.
    G. Hui, H. Zhang, Z. Wu, Y. Wang, Control synthesis problem for networked linear sampled-data control systems with band-limited channels. Inf. Sci. 275, 385–399 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    O. Lamrabet, N. El Fezazi, F. El Haoussi, E.H. Tissir, Using input delay approach for synthesizing an anti-windup compensator to AQM in TCP/IP networks, in International Conference on Advanced Technologies, Signal and Image Processing, Fez, Morocco, 2017Google Scholar
  22. 22.
    F. Li, C. Du, C. Yang, W. Gui, Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems. IEEE Trans. Autom. Control 63, 2715–2721 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    K. Liu, E. Fridman, Wirtingers inequality and Lyapunov-based sampled-data stabilization. Automatica 48(1), 102–108 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    X. Liu, H. Yu, J. Yu, L. Zhao, Combined speed and current terminal sliding mode control with nonlinear disturbance observer for PMSM drive, in IEEE Transactions, 6, 2018, pp. 29594–29601Google Scholar
  25. 25.
    F. Milano, M. Anghel, Impact of time delays on power system stability. IEEE Trans. Circuits Syst. I 59(4), 889–900 (2012)MathSciNetGoogle Scholar
  26. 26.
    F. Milano, I.K. Dassios, Small-signal stability analysis for non-index 1 Hessenberg form systems of delay differential-algebraic equations. IEEE Trans. Circuits Syst. 63(9), 1521–1530 (2016)MathSciNetGoogle Scholar
  27. 27.
    M. Moarref, L. Rodrigues, Stability and stabilization of linear sampled-data systems with multi-rate samplers and time driven zero order holds. Automatica 50, 26852691 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    M.J. Park, O.M. Kwon, J.H. Park, S.M. Lee, E.J. Cha, Stability of time-delay systems via wirtinger-based double integral inequality. Automatica 55, 204–208 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    F. Qiu, J. Cao, Exponential stability and L 2-gain analysis for sampled-data control of linear systems. J. Frankl. Inst. 353(2), 462–477 (2016)zbMATHGoogle Scholar
  30. 30.
    J. Qiu, H. Gao, S.X. Ding, Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–1217 (2016)Google Scholar
  31. 31.
    R. Sakthivel, D. Aravindh, P. Selvaraj, S.V. Kumar, S.M. Anthoni, Vibration control of structural systems via robust non-fragile sampled-data control scheme. J. Frankl. Inst. 354(3), 1265–1284 (2017)MathSciNetzbMATHGoogle Scholar
  32. 32.
    R. Sakthivel, S. Santra, B. Kaviarasan, H. Park, Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86(3), 2081–2092 (2016)zbMATHGoogle Scholar
  33. 33.
    S. Santra, R.H. Karimi, R. Sakthivel, S. Marshal Anthoni, Dissipative based adaptive reliable sampled-data control of time-varying delay systems. Int. J. Control Autom. Syst. 14(1), 39–50 (2016)Google Scholar
  34. 34.
    A. Selivanov, E. Fridman, Simple conditions for sampled -data stabilization by using artificial delay. IFAC 50(1), 13295–13299 (2017)Google Scholar
  35. 35.
    A. Seuret, J.J.M.G. da Silva, Taking into account period variations and actuator saturation in sampled-data systems. Syst. Control Lett. 61(12), 12861293 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    G. Song, J. Lam, S. Xu, Robust quantized output feedback control for uncertain discrete time-delay systems with saturation nonlinearity. Int. J. Robust Nonlinear Control 25(18), 3515–3527 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    P. Shi, F. Li, L. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017)MathSciNetGoogle Scholar
  38. 38.
    E.H. Tissir, Delay-dependent robust stability of linear systems with non-commensurate time varying delays. Int. J. Syst. Sci. 49(9), 749–757 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    E.H. Tissir, Delay-dependent robust stabilization for systems with uncertain time varying delay. J. Dyn. Syst. Meas. Control 132(5), 1–7 (2010)Google Scholar
  40. 40.
    Y. Wang, Y. Cao, Y. Sun, Anti-windup compensator gain design for time-delay systems with constraints. Acta Autom. Sin. 32(1), 455–470 (2006)MathSciNetGoogle Scholar
  41. 41.
    C. Xing, G. Shang, H. Yong, L. Wen-Juan, W. Min, Improved synchronization of chaotic Lur’e systems with time delay using sampled-data control. J. Frankl. Inst. 354(3), 1618–1636 (2017)MathSciNetzbMATHGoogle Scholar
  42. 42.
    J. Xiong, J. Lam, Stabilization of networked control systems with a logic ZOH. IEEE Trans. Autom. Control 54(2), 358–363 (2009)MathSciNetzbMATHGoogle Scholar
  43. 43.
    C.K. Zhang, Y. He, L. Jiang, M. Wu, Q.H. Wu, Stability analysis of sampled-data systems considering time delays and its application to electric power markets. J. Frankl. Inst. 351, 4457–4478 (2014)MathSciNetzbMATHGoogle Scholar
  44. 44.
    H. Zhang, G. Feng, H. Yan, Q. Chen, Sampled-data control of nonlinear networked systems with time-delay and quantization. Int. J. Robust Nonlinear Control 26(5), 919–933 (2016)MathSciNetzbMATHGoogle Scholar
  45. 45.
    F. Zhongyang, G. Chaoxu, S. Peng, Further results on H∞ control for discrete-time Markovian jump time delay systems. Int. J. Control 90(7), 1517 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ouarda Lamrabet
    • 1
    Email author
  • El Houssaine Tissir
    • 1
  • Fatima El Haoussi
    • 2
  1. 1.Department of Physics, Faculty of Sciences Dhar El MehrazSidi Mohammed Ben Abdellah University, LESSIFes-AtlasMorocco
  2. 2.Department of Mathematics and Informatics, Polydisciplinary FacultySelouane, NadorMorocco

Personalised recommendations