Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2023–2038 | Cite as

Multi-innovation Stochastic Gradient Algorithms for Input Nonlinear Time-Varying Systems Based on the Line Search Strategy

  • Qianyan ShenEmail author
  • Jing Chen
  • Xingyun Ma
Article
  • 56 Downloads

Abstract

Block-oriented nonlinear systems have attracted a considerable attention for their flexible structure and practicability. This study proposes a novel multi-innovation stochastic gradient (MISG) algorithm to address the identification problem in input nonlinear systems. This involves applying the inexact line search strategy to determine an appropriate convergence factor at each recursive step. The proposed algorithm tracks the nonlinear system dynamics faster than the conventional MISG algorithm. It is therefore suitable for online identification and can be applied to nonlinear time-varying systems. The concept of auxiliary model identification is also adopted for dealing with unmeasurable variables. The effectiveness of the proposed algorithm is verified through simulated examples.

Keywords

Parameter identification Multi-innovation identification Nonlinear system Line search Time-varying system 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61403165), the Natural Science Foundation for Colleges and Universities in Jiangsu Province (No. 16KJB120006) and the Research Fund of Jinling Institute of Technology for Advanced Talents (No. jit-b-201805).

References

  1. 1.
    L. Armijo, Minimization of functions having Lipschitz continuous first-partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    F.R. Avila, L.T. Duarte, L.W.P. Biscainho, On the sparsity-based identification and compensation of Hammerstein systems. IEEE Signal Process. Lett. 24(9), 1363–1367 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Chen, J. Li, Y.J. Liu, F. Ding, Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter. J. Frankl. I. 354(11), 4425–4437 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Chen, Y.J. Liu, X.H. Wang, Recursive least squares algorithm for nonlinear dual-rate systems using missing-output estimation model. Circuits Syst. Signal Process. 36(4), 1406–1425 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Guo, L.Y. Wang, G. Yin, Y.L. Zhao, J.F. Zhang, Identification of Wiener systems with quantized inputs and binary-valued output observations. Automatica 78, 280–286 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. Havangi, Joint parameter and state estimation based on marginal particle filter and particle swarm optimization. Circuits Syst. Signal Process. 37(8), 3558–3575 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y.B. Hu, B.L. Liu, Q. Zhou, A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems. Appl. Math. Comput. 247, 218–224 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Y.J. Lu, B. Huang, S. Khatibisepehr, A variational Bayesian approach to robust identification of switched ARX models. IEEE Trans. Cybern. 46(12), 3195–3208 (2016)CrossRefGoogle Scholar
  9. 9.
    J.P. Li, C.C. Hua, Y.G. Tang, X.P. Guan, A time-varying forgetting factor stochastic gradient combined with Kalman filter algorithm for parameter identification of dynamic systems. Nonlinear Dyn. 78(3), 1943–1952 (2014)CrossRefGoogle Scholar
  10. 10.
    M.H. Li, X.M. Liu, F. Ding, The gradient-based iterative estimation algorithms for bilinear systems with autoregressive noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Li, Y. Shi, Robust H-infty filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chains. Automatica 48(1), 159–166 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.D. Meng, Recursive least squares and multi-innovation gradient estimation algorithms for bilinear stochastic systems. Circuits Syst. Signal Process. 36(3), 1052–1065 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P.S. Pal, R. Kar, D. Mandal, S.P. Ghoshal, Parametric identification with performance assessment of Wiener systems using brain storm optimization algorithm. Circuits Syst. Signal Process. 36(8), 3143–3181 (2017)CrossRefzbMATHGoogle Scholar
  14. 14.
    J.B. Qiu, H. Tian, Q.G. Lu, H.J. Gao, Nonsynchronized robust filtering design for continuous-time T–S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)CrossRefGoogle Scholar
  15. 15.
    J.B. Qiu, Y.L. Wei, H.J. Gao, Reliable control of discrete-time piecewise-affine time-delay systems via output feedback. IEEE Trans. Reliab. 67(1), 79–91 (2018)CrossRefGoogle Scholar
  16. 16.
    J.B. Qiu, Y.L. Wei, L.G. Wu, A novel approach to reliable control of piecewise affine systems with actuator faults. IEEE Trans. Circuits Syst. II Exp. Briefs 64(8), 957–961 (2017)CrossRefGoogle Scholar
  17. 17.
    Q.Y. Shen, F. Ding, Least squares identification for Hammerstein multi-input multi-output systems based on the key-term separation technique. Circuits Syst. Signal Process. 35(10), 3745–3758 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Q.Y. Shen, F. Ding, Hierarchical multi-innovation extended stochastic gradient algorithms for input nonlinear multivariable OEMA systems by the key-term separation principle. Nonlinear Dyn. 85(1), 499–507 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Q.Y. Shen, F. Ding, Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle. J. Frankl. I. 352(7), 2847–2865 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Y. Shi, J. Huang, B. Yu, Robust tracking control of networked control systems: application to a networked DC motor. IEEE Trans. Ind. Electr. 60(12), 5864–5874 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Shi, B. Yu, Robust mixed H\_2/H\_infinity control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754–760 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. Vörös, Recursive identification of discrete-time nonlinear cascade systems with time-varying output hysteresis. Nonlinear Dyn. 87(2), 1427–1434 (2017)CrossRefGoogle Scholar
  23. 23.
    X.Y. Yin, J.F. Liu, Distributed moving horizon state estimation of two-time-scale nonlinear systems. Automatica 79, 152–161 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    X.Y. Yin, Z.J. Li, L.X. Zhang, M. Han, Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process. IEEE Trans. Syst. Man Cybern. Syst. 48(6), 864–874 (2018)CrossRefGoogle Scholar
  25. 25.
    X.Q. Yang, W.L. Xiong, J.X. Ma, Z.Y. Wang, Robust identification of Wiener time-delay system with expectation–maximization algorithm. J. Frankl. I. 354(13), 5678–5693 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    X.Y. Yin, L.X. Zhang, Y.Z. Zhu, C.H. Wang, Z.J. Li, Robust control of networked systems with variable communication capabilities and application to a semi-active suspension system. IEEE/ASME Trans. Mechatron. 21(4), 2097–2107 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, F. Ding, F.E. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jinling Institute of TechnologyNanjingPeople’s Republic of China
  2. 2.School of ScienceJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations