A Computationally Efficient Blind Source Extraction Using Idempotent Transformation Matrix

  • Luay Yassin TahaEmail author
  • Esam Abdel-Raheem


Blind source separation (BSS) problem is an open area of research that requires further investigations. Various algorithms were presented in the literature based on second-order statistics and higher-order statistics. The computational complexity of those methods is a challenging task and must be carefully considered to produce fast BSS algorithms. In blind source extraction (BSE) using linear predictors, the adaptive filter update requires complex computations that need consideration. This work focus on new BSE using the idempotent transformation matrix. New algorithm is presented in this work to compute the matrix with less computational complexity as compared with the standard singular value decomposition method. New optimization problem was defined according to the proposed matrix equation, and solved by an iterative algorithm with low computational complexity. The proposed method is tested using speech and white Gaussian signals. The performance measures used in this work are the signal-to-interference ratio, signal-to-distortion ratio, and signal-to-artifact ratio. Simulation results show that the proposed algorithm significantly separate the source signals with better performance measures as compared with the state-of-the-art approaches such as second-order blind identification and fast independent component analysis.


Blind source separation Blind source extraction Singular value decomposition Fast independent component analysis Second-order blind identification Speech signals. 


  1. 1.
    P. Ahmadian, S. Sanei, L. Ascari, L.G. Villanueva, L. Umiltà, M. Alessandra, Constrained blind source extraction of readiness potentials from EEG. IEEE Trans. Neural Syst. Rehab. Eng. 21(4), 567–575 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Albera, A. Kachenoura, P. Comon, A. Karfoul, F. Wendling, L. Senhadji, I. Merlet, ICA-based EEG denoising: a comparative analysis of fifteen methods. Bull. Pol. Acad. Sci. Tech. Sci. 60(3), 407–418 (2012)Google Scholar
  3. 3.
    H. Becker, L. Albera, P. Comon, A. Kachenoura, I. Merlet, A penalized semialgebraic deflation ICA algorithm for the efficient extraction of interictal epileptic signals. IEEE J. Biomed. Health Inform. 21(1), 94–104 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Bose, F. Meyer, Digital Signal and Image Processing (Wiley, London, 2003)Google Scholar
  5. 5.
    M. Bouss, O. Debals, L. De Lathauwer, A tensor-based method for large-scale blind source separation using segmentation. IEEE Trans. Signal Process. 65(2), 346–358 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Chai, G.R. Naik, T.N. Nguyen, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J. Biomed. Health Inform. 21(3), 715–724 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Chi, Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. IEEE J. Sel. Top. Signal Process. 10(4), 782–794 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, London, 2002)CrossRefGoogle Scholar
  9. 9.
    O. Debals, M.V. Barel, L.D. Lathauwer, Löwner-based blind signal separation of rational functions with applications. IEEE Trans. Signal Process. 64(8), 1909–1918 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Ferdowsi, S. Sanei, V. Abolghasemi, J. Nottage, O. ODaly, Removing ballistocardiogram artifact from EEG using short-and long-term linear predictor. IEEE Trans. Biomed. Eng. 60(7), 1900–1911 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Ferdowsi, V. Abolghasemi, S. Sanei, Blind separation of ballistocardiogram from EEG via short-and-long-term linear prediction, in IEEE International Workshop on Machine Learning for Signal Process, pp. 1–6 (2012)Google Scholar
  12. 12.
    R. Gribonval, C. Févotte, E. Vincent, BSS EVAL toolbox user guide (IRISA Technical Report, 2005)Google Scholar
  13. 13.
    S.H. Hsu, T.R. Mullen, T.P. Jung, G. Cauwenberghs, Real-time adaptive EEG source separation using online recursive independent component analysis. IEEE Trans. Neural Syst. Rehab. 24(3), 209–3194 (2016)Google Scholar
  14. 14.
    W.L. Hwang, K.S. Lu, J. Ho, Constrained null space component analysis for semiblind source separation problem. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 377–391 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
  16. 16.
    S. Javidi, D.P. Mandic, A. Cichocki, Complex blind source extraction from noisy mixtures using second-order statistics. IEEE Trans. Circuits Syst. I Regul. Pap. 57(7), 1404–1416 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Kaftory, Y.Y. Zeevi, Blind separation of time/position varying mixtures. IEEE Trans. Image Process. 22(1), 104–118 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Kemiha, A. Kacha, Complex blind source separation. Circuits Syst. Signal Process. 36(11), 4670–4687 (2017)CrossRefGoogle Scholar
  19. 19.
    V. Kumar, C.R. Rao, A. Dutta, Performance analysis of blind source separation using canonical correlation. Circuits Syst. Signal Process. 37(2), 658–673 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Li, S. Lyu, Extracting chaotic signal from noisy environment: a random searching method. Chin. J. Electron. 24(3), 584–589 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Li, W. Nie, F. Ye, Y. Lin, A mixing matrix estimation algorithm for underdetermined blind source separation. Circuits Syst. Signal Process. 35(9), 3367–3379 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Liu, V.G. Reju, A.-W. Khong, A linear source recovery method for underdetermined mixtures of uncorrelated AR-model signals without sparseness. IEEE Trans. Signal Process. 62(19), 4947–4958 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Liu, S. Liu, T. Huang, Z. Zhang, Y. Hu, T. Zhang, Infrared spectrum blind deconvolution algorithm via learned dictionaries and sparse representation. Appl. Opt. 55(10), 2813–2818 (2016)CrossRefGoogle Scholar
  24. 24.
    W. Liu, D.P. Mandic, A. Cichocki, A dual-linear predictor approach to blind source extraction for noisy mixtures. In Proceeding of IEEE Workshop on Sensor Array and Multichannel Signal Process, pp. 515–519 (2008)Google Scholar
  25. 25.
    W. Liu, D. Mandic, A. Cichocki, Blind source extraction based on a linear predictor. IET Signal Process. 1(1), 29–34 (2007)CrossRefGoogle Scholar
  26. 26.
    X. Lu, X. Li, M.S. Fu, H. Wang, Robust maximum signal fraction analysis for blind source separation. IET Signal Process. 11(8), 969–974 (2017)CrossRefGoogle Scholar
  27. 27.
    D.P. Mandic, A. Cichocki, An online algorithm for blind extraction of sources with different dynamical structures, in Proceeding of the International Conference on Independent Component Analysis and Blind Signal Separation, pp. 645–650 (2003)Google Scholar
  28. 28.
    I. Meganem, Y. Deville, S. Hosseini, P. Deliot, X. Briottet, Linear-quadratic blind source separation using NMF to unmix urban hyperspectral image. IEEE Trans. Signal Process. 62(7), 1822–1833 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G.R. Naik, A.H. Al-Timemy, H.T. Nguyen, Transradial amputee gesture classification using an optimal umber of sEMG sensors: an approach using ICA clustering. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 837–846 (2016)CrossRefGoogle Scholar
  30. 30.
    G.R. Naik, S.E. Selvan, H.T. Nguyen, Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(7), 734–743 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Pendharkar, G.R. Naik, H.T. Nguyen, Using blind source separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomed. Signal Process. Control 13, 41–49 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Ren, Y. Song, X. Su, Low-complexity channel reconstruction methods based on SVD-ZF precoding in massive 3D-MIMO systems. China Commun. 12, 49–57 (2015)CrossRefGoogle Scholar
  33. 33.
    W. Rongjie, Z. Yiju, Z. Haifeng, A class of sequential blind source separation method in order using swarm optimization algorithm. Circuits Syst. Signal Process. 35(9), 3220–3243 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    P. Sutha, V.E. Jayanthi, A. Cichocki, Fetal electrocardiogram extraction and analysis using adaptive noise cancellation and wavelet transformation techniques. J. Med. Syst. 42(21), 1–18 (2018)Google Scholar
  35. 35.
    P. Sutha, V.E. Jayanthi, A. Cichocki, Method of fetal electrocardiogram extraction based on n-support vector regression. IET Signal Process. 9(5), 430–439 (2015)CrossRefGoogle Scholar
  36. 36.
    A.L. Taha, L.Y. Taha, E. Abdel-Raheem, FastICA architecture utilizing FPGA and iterative symmetric orthogonalization for multivariate signals, in IEEE International Symposium on Signal Processing and Information Technology, pp. 279–284 (2015)Google Scholar
  37. 37.
    L.Y. Taha, E. Abdel-Raheem, A null space approach for complete and over-complete blind source separation of auto regressive source signals. In Proceeding of the IEEE Canadian Conference in Electrical and Computer Engineering, pp. 1–4 (2017)Google Scholar
  38. 38.
    L.Y. Taha, E. Abdel-Raheem, Efficient blind source extraction of noisy mixture utilising a class of parallel linear predictor filters. IET Signal processing., Print ISSN 1751-9675, Online ISSN 1751-9683 (2018)CrossRefGoogle Scholar
  39. 39.
    E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006)CrossRefGoogle Scholar
  40. 40.
    H. Wang, Z. Su, H. Fang, A Cichocki, Simulating normal and abnormal ECG signals in children age 0–16, in Proceeding of the IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 282–283, 17–19 July 2017Google Scholar
  41. 41.
    L. Wang, Y. Chi, Blind deconvolution from multiple sparse inputs. IEEE Signal Process. Lett. 23(10), 1384–1388 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Zhou, C. Li, Outsourcing eigen-decomposition and singular value decomposition of large matrix to a public cloud. IEEE Access 4, 869–879 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations