Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2072–2096 | Cite as

Mathematical mixed-integer programming for solving a new optimization model of selective image restoration: modelling and resolution by CHN and GA

  • Nour-eddine JoudarEmail author
  • Mohamed Ettaouil
Article
  • 18 Downloads

Abstract

In grey-level image restoration, a prior knowledge of degraded areas allows, thanks to the selective filtering, to achieve a good protection of the image features. In this paper, we propose a quadratic programming-based technique that deals with the issue of details preservation during the restoration process. Based on the classical model of image restoration, we build a modified model by introducing a set of binary variables that indicate the pixel categories. We combine each pixel with the median of its neighbours in a decision rule so that one of them generates the optimal solution. The obtained model is a nonlinear mixed-integer problem where resolution by exact methods is not feasible. In this regard, we use both of the continuous Hopfield neural network and the genetic algorithm to solve the suggested model. Performance of our method is demonstrated numerically and visually by several computational tests.

Keywords

Image restoration Optimization Selective image restoration Median Continuous Hopfield neural network Penalty function Quadratic programming Genetic algorithm 

References

  1. 1.
    L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axiomatisation et nouveaux oprateurs de la morphologie mathmatique. Comptes rendus de lAcadmie des sciences. Srie 1, Mathmatique 315, 265–268 (1992)zbMATHGoogle Scholar
  2. 2.
    J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering (CRC Press, Boca Raton, 1997)zbMATHGoogle Scholar
  3. 3.
    G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Springer, Berlin, 2006)zbMATHGoogle Scholar
  4. 4.
    A. Chambolle, V. Caselles, D. Cremers, M. Novaga, T. Pock, An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Rec 9, 227 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Geman, G. Reynolds, Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)CrossRefGoogle Scholar
  7. 7.
    S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted nuclear norm minimization with application to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 2862–2869Google Scholar
  8. 8.
    J. Hadamard, Sur les problemes aux derive espartielles et leur signification physique. Bull. Princet. Univ. 13, 1–20 (1902)Google Scholar
  9. 9.
    P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.H. Holland, Adaptation in Natural and Artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press Ann Arbor (1975)Google Scholar
  11. 11.
    J.J. Hopfield, Neurons with Graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)CrossRefzbMATHGoogle Scholar
  12. 12.
    N. Joudar, K. El Moutouakil, M. Ettaouil, An original continuous Hopfield Network for optimal images restoration. WSEAS Trans. Comput. 14, 668–678 (2015)Google Scholar
  13. 13.
    N.-E. Joudar, F. Harchli, E.-S. Abdelatif, M. Ettaouil, New adaptive switching scheme for impulse noise removal: modelling and resolution by genetic optimisation. Int. J. Signal Imaging Syst. Eng. 10, 316–323 (2017)CrossRefGoogle Scholar
  14. 14.
    N.-E. Joudar, E. Zakariae, M. Ettaouil, Using continuous hopfield neural network for choice architecture of probabilistic self-organizing map, in First International Conference on Real Time Intelligent Systems (Springer, 2017), pp. 123–133Google Scholar
  15. 15.
    A.K. Katsaggelos, Digital Image Restoration (Springer, Berlin, 2012)Google Scholar
  16. 16.
    J.J. Koenderink, The structure of images. Biol. Cybern. 50, 363–370 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M.K. Ozkan, A.T. Erdem, M.I. Sezan, A.M. Tekalp, Efficient multiframe Wiener restoration of blurred and noisy image sequences. IEEE Trans. Image Process. 1, 453–476 (1992)CrossRefGoogle Scholar
  18. 18.
    J.K. Paik, A.K. Katsaggelos, Image restoration using a modified Hopfield network. IEEE Trans. Image Process. 1, 49–63 (1992)CrossRefGoogle Scholar
  19. 19.
    S. Park, Signal space interpretations of Hopfield neural network for optimization, in IEEE International Symposium on Circuits and Systems 1989 (IEEE, 1989), pp. 2181–2184Google Scholar
  20. 20.
    P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Ppattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  21. 21.
    L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K. Sakthidasan, N.V. Nagappan, Noise free image restoration using hybrid filter with adaptive genetic algorithm. Comput. Electr. Eng. 54, 382–392 (2016)CrossRefGoogle Scholar
  23. 23.
    P.M. Talavn, J. Yez, Parameter setting of the Hopfield network applied to TSP. Neural Netw. 15, 363–373 (2002)CrossRefGoogle Scholar
  24. 24.
    P.M. Talavn, J. Yez, A continuous Hopfield network equilibrium points algorithm. Comput. Oper. Res. 32, 2179–2196 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.N. Tikhonov, V.A. Arsenin, V. Kotliar, Mthodes de rsolution de problmes mal poss (1976)Google Scholar
  26. 26.
    S. Uma, S. Annadurai, Image restoration using modified recurrent Hopfield neural network. Int. J. Signal Imaging Syst. Eng. 1, 264–272 (2008)CrossRefGoogle Scholar
  27. 27.
    U.-P. Wen, K.-M. Lan, H.-S. Shih, A review of Hopfield neural networks for solving mathematical programming problems. Eur. J. Oper. Res. 198, 675–687 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    W.-R. Wu, A. Kundu, Image estimation using fast modified reduced update Kalman filter. IEEE Trans. Signal Process. 40, 915–926 (1992)CrossRefGoogle Scholar
  29. 29.
    Y.-D. Wu, Q.-X. Zhu, S.-X. Sun, H.-Y. Zhang, Image restoration using variational PDE-based neural network. Neurocomputing 69, 2364–2368 (2006)CrossRefGoogle Scholar
  30. 30.
    Y.-L. You, M. Kaveh, Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Y.-T. Zhou, R. Chellappa, A. Vaid, B.K. Jenkins, Image restoration using a neural network. IEEE Trans. Acoust. Speech Signal Process. 36, 1141–1151 (1988)CrossRefzbMATHGoogle Scholar
  32. 32.
    Z. Zuo, T. Zhang, X. Lan, L. Yan, An adaptive non-local total variation blind deconvolution employing split Bregman iteration. Circuits Syst. Signal Process. 32, 2407–2421 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and TechnologyUniversity Sidi Mohamed Ben Abdellah FezFezMorocco

Personalised recommendations