Advertisement

Fusion Algorithm for Accurate Delineation of QRS Complex in ECG Signal

  • Pooja Sabherwal
  • Monika Agrawal
  • Latika Singh
Article

Abstract

In this paper, a novel algorithm for the accurate localization of QRS complex with low average time error is proposed. The idea is thought that the various features of ECG signal like P, Q, R, S and T peaks can be independently detected from raw ECG recording and fused together to obtain a better estimate of QRS position. To explore, in this paper, an algorithm is suggested to first estimate R peak and S peak from raw ECG signal and then fused together to detect and localize QRS complex. The algorithm is validated on all the signals of MIT-BIH arrhythmia database, QT database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted with noise, and these noises are generated by adding the power line interference, electrode motion artifact, baseline wandering interference and muscle artifact to all the signals of MIT-BIH arrhythmia database and QT database. The algorithm performance is confirmed not only with a very high sensitivity and positive predictivity, but also with a very low average time error of 0.63 ms against the 3.03 ms the best results reported so far for the signals of MIT-BIH arrhythmia database and 0.85 ms against the 3.6 ms the best results reported in the literature for the signals of QT database.

Keywords

QRS complex localization ECG signal Wavelet transform S peak Fusion algorithm 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their valuable comments which helped in improving this manuscript. The authors would also like to thank the Project Supported by the Government of India, Department of Science and Technology under No. SR/WOS-A/ET-1049/2015(G).

References

  1. 1.
    J. Arteaga-Falconi, H. Al Osman, A. El Saddik, R-peak detection algorithm based on differentiation, in 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) (IEEE, 2015), pp. 1–4Google Scholar
  2. 2.
    N.M. Arzeno, Z.D. Deng, C.S. Poon, Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 55(2), 478–484 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Banerjee, M. Mitra, ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform, in 2010 International Conference on Systems in Medicine and Biology (ICSMB) (IEEE, 2010), pp. 55–60Google Scholar
  4. 4.
    D. Benitez, P. Gaydecki, A. Zaidi, A. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31(5), 399–406 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Castells-Rufas, J. Carrabina, Simple real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 21, 137–145 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Elgendi, B. Eskofier, D. Abbott, Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sensors 15(7), 17693–17714 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Gacek, W. Pedrycz, ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence (Springer, Berlin, 2011)Google Scholar
  8. 8.
    S. Guzzetti, M.T.L. Rovere, G.D. Pinna, R. Maestri, E. Borroni, A. Porta, A. Mortara, A. Malliani, Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur. Heart J. 26(4), 357–362 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Hamdi, A.B. Abdallah, M.H. Bedoui, Real time QRS complex detection using DFA and regular grammar. Biomed. Eng. Online 16(1), 31 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Jiang, W.R. Hathaway, S. McNulty, R.L. Larsen, K.L. Hansley, Y. Zhang, C.M. O’Connor, Ability of heart rate variability to predict prognosis in patients with advanced congestive heart failure. Am. J. Cardiol. 80(6), 808 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Kearney, K. Fox, A. Lee, W. Brooksby, A. Shah, A. Flapan, R. Prescott, R. Andrews, P. Batin, D. Eckberg et al., Predicting sudden death in patients with mild to moderate chronic heart failure. Heart 90(10), 1137–1143 (2004)CrossRefGoogle Scholar
  12. 12.
    B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Laguna, R. Jané, P. Caminal, Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27(1), 45–60 (1994)CrossRefGoogle Scholar
  14. 14.
    P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Computers in Cardiology 1997 (IEEE, 1997), pp. 673–676Google Scholar
  15. 15.
    C. Li, C. Zheng, C. Tai, Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)CrossRefGoogle Scholar
  16. 16.
    H. Li, X. Wang, L. Chen, E. Li, Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope. Circuits Syst. Signal Process. 33(4), 1261–1276 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Ma, T. Li, Y. Ma, K. Zhan, Novel real-time FPGA-based R-wave detection using lifting wavelet. Circuits Syst. Signal Process. 35(1), 281–299 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M.S. Manikandan, B. Ramkumar, Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthc. Technol. Lett. 1(1), 40–44 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Mark, G. Moody, MIT-BIH Arrhythmia Database Directory (Massachusetts Institute of Technology, Cambridge, 1988)Google Scholar
  20. 20.
    J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)CrossRefGoogle Scholar
  22. 22.
    D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max–min difference algorithm. Comput. Methods Programs Biomed. 144, 61–75 (2017)CrossRefGoogle Scholar
  23. 23.
    T. Penzel, J. McNames, P. De Chazal, B. Raymond, A. Murray, G. Moody, Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 40(4), 402–407 (2002)CrossRefGoogle Scholar
  24. 24.
    R. Polikar, The Wavelet Tutorial (Rowan Univeristy, 1996)Google Scholar
  25. 25.
    C.S. Poon, C.K. Merrill, Decrease of cardiac chaos in congestive heart failure. Nature 389(6650), 492 (1997)CrossRefGoogle Scholar
  26. 26.
    M. Rakshit, S. Das, An efficient wavelet-based automated R-peaks detection method using Hilbert transform. Biocybern. Biomed. Eng. 37(3), 566–577 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Rezk, C. Join, S. El Asmi, An algebraic derivative-based method for R wave detection, In 2011 19th European Signal Processing Conference (IEEE, 2011), pp. 1578–1582Google Scholar
  28. 28.
    P. Sabherwal, M. Agrawal, L. Singh, Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 36(11), 4637–4652 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Sabherwal, L. Singh, M. Agrawal, Aiding the detection of QRS complex in ECG signals by detecting S peaks independently. Cardiovas. Eng. Technol. 9, 469.  https://doi.org/10.1007/s13239-018-0355-0 CrossRefGoogle Scholar
  30. 30.
    J. Sahambi, S. Tandon, R. Bhatt, Using wavelet transforms for ECG characterization. An on-line digital signal processing system. IEEE Eng. Med. Biol. Mag. 16(1), 77–83 (1997)CrossRefGoogle Scholar
  31. 31.
    U.J. Scholz, A.M. Bianchi, S. Cerutti, S. Kubicki, Vegetative background of sleep: spectral analysis of the heart rate variability. Physiol. Behav. 62(5), 1037–1043 (1997)CrossRefGoogle Scholar
  32. 32.
    T. Sharma, K.K. Sharma, A new method for QRS detection in ECG signals using QRS-preserving filtering techniques. Biomed. Eng./Biomedizinische Technik 63(2), 207–217 (2018)CrossRefGoogle Scholar
  33. 33.
    R.B. Shouldice, L.M. O’brien, C. O’brien, P. de Chazal, D. Gozal, C. Heneghan, Detection of obstructive sleep apnea in pediatric subjects using surface lead electrocardiogram features. Sleep 27(4), 784–792 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Trinder, J. Kleiman, M. Carrington, S. Smith, S. Breen, N. Tan, Y. Kim, Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res. 10(4), 253–264 (2001)CrossRefGoogle Scholar
  35. 35.
    L. Zapanta, C.S. Poon, D. White, C. Marcus, E. Katz, Heart rate chaos in obstructive sleep apnea in children, in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004 (IEMBS’04), vol. 2 (IEEE, 2004), pp. 3889–3892Google Scholar
  36. 36.
    H. Zhang, J. Wang, Adaptive sliding-mode observer design for a selective catalytic reduction system of ground-vehicle diesel engines. IEEE/ASME Trans. Mechatron. 21(4), 2027–2038 (2016)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, J. Wang, Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 66(5), 3685–3702 (2017)CrossRefGoogle Scholar
  38. 38.
    Z. Zidelmal, A. Amirou, D. Ould-Abdeslam, A. Moukadem, A. Dieterlen, QRS detection using S-transform and shannon energy. Comput. Methods Programs Biomed. 116(1), 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The NorthCap UniversityGurgaonIndia
  2. 2.CAREIIT DelhiDelhiIndia

Personalised recommendations