A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ
- 128 Downloads
Abstract
We report a wireless energy harvesting and telemetry storage system in 180 nm CMOS technology, demonstrated in situ in rat carcass. The implantable device has dimensions 13 mm × 15 mm and stores 87.5 mJ, providing a self-powering time of 8.5 s transmitting through tissue. We utilize an all-solid-state flexible supercapacitor of breakdown voltage 0.8 V and capacitance 400 mF to harvest incoming wireless power, followed by a boost converter CMOS that drives an active wireless transmitter at 1.5 V at 2.4 GHz in the industrial, scientific, and medical (ISM) band. The DC/DC converter component and switching frequency selection were guided by genetic algorithm analysis and use digital feedback to control the pulse width modulation (PWM), which slowly modifies the duty cycle to control output voltage fluctuations. This implantable medical device system presents the roadmap for batteryless energy harvesting in vivo and in clinical environments, exhibiting the highest operating storage density of 450 μJ/mm2 reported to date.
Keywords
Implantable device Energy harvesting Power management In situ Subcutaneous Supercapacitor Wireless transmission OOK modulationNotes
Acknowledgements
The authors would like to thank Henry Zhang for his assistance in device assembly and packaging. The authors would like to acknowledge Emily Cook for helpful discussions on multivibrator circuits. This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-11-1-4029.
References
- 1.M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)CrossRefGoogle Scholar
- 2.S. Arnon, D. Bhastekar, D. Kedar, A. Tauber, A comparative study of wireless communication network configurations for medical applications. IEEE Wirel. Commun. 10(1), 56–61 (2003)CrossRefGoogle Scholar
- 3.M. Arsalan, M.H. Ouda, L. Marnat, T.J. Ahmad, A. Shamim, K.N. Salama, A 5.2 GHz, 0.5 mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring, in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International 2013, pp. 1–4. IEEEGoogle Scholar
- 4.R.J. Baker, CMOS: circuit design, layout, and simulation, vol. 1 (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
- 5.H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)CrossRefGoogle Scholar
- 6.R.A. Bercich, J. Joseph, O.Z. Gall, J. Maeng, Y.J. Kim, P.P. Irazoqui, in Implantable Device for Intramuscular Myoelectric Signal Recording. 34th Annual International Conference of the IEEE EMBS (2012)Google Scholar
- 7.R.A. Bercich, D.R. Duffy, P.P. Irazoqui, Far-field RF powering of implantable devices: safety considerations. IEEE Trans. Biomed. Eng. 60(8), 2107–2112 (2013)CrossRefGoogle Scholar
- 8.H. Bhamra, Y.-J. Kim, J. Joseph, J. Lynch, O.Z. Gall, H. Mei, C. Meng, J.-W. Tsai, P. Irazoqui, A, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control. IEEE J. Solid-State Circuits 50(11), 2714–2727 (2015)CrossRefGoogle Scholar
- 9.H. Bhamra, J. Lynch, M. Ward, P. Irazoqui, A noise-power-area optimized biosensing front end for wireless body sensor nodes and medical implantable devices. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25, 2917 (2017)CrossRefGoogle Scholar
- 10.H. Bhamra, J.-W. Tsai, Y.-W. Huang, Q. Yuan, P. Irazoqui, 21.3 A sub-mm 3 wireless implantable intraocular pressure monitor microsystem, in Solid-State Circuits Conference (ISSCC), 2017 IEEE International 2017, pp. 356-357. IEEEGoogle Scholar
- 11.A. Borna, K. Najafi, A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J. Solid-State Circuits 49(2), 439–451 (2014)CrossRefGoogle Scholar
- 12.J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)CrossRefGoogle Scholar
- 13.S. Brenna, F. Padovan, A. Neviani, A. Bevilacqua, A. Bonfanti, A.L. Lacaita, A 64-Channel 965-μW Neural Recording SoC With UWB Wireless Transmission in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 63(6), 528–532 (2016)CrossRefGoogle Scholar
- 14.A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)MathSciNetCrossRefGoogle Scholar
- 15.A.P. Chandrakasan, N. Verma, D.C. Daly, Ultralow-power electronics for biomedical applications. Ann Rev Biomed Eng 10, 247 (2008)CrossRefGoogle Scholar
- 16.L. Chao, C.-Y. Tsui, W.-H. Ki, A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications, in 2007 IEEE International Symposium on Circuits and Systems 2007, pp. 1349–1352. IEEEGoogle Scholar
- 17.J. Charthad, M.J. Weber, T.C. Chang, A. Arbabian, A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)CrossRefGoogle Scholar
- 18.S. Chattopadhyay, N. Choudhary, Genetic algorithm based approach for low power combinational circuit testing, in VLSI Design, 2003. Proceedings. 16th International Conference on 2003, pp. 552–557. IEEEGoogle Scholar
- 19.E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International 2010, pp. 236–237. IEEEGoogle Scholar
- 20.E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Biomed. Circuits Syst. 4(6), 340–349 (2010)CrossRefGoogle Scholar
- 21.P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)CrossRefGoogle Scholar
- 22.B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer, Berlin, 2013)Google Scholar
- 23.A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
- 24.Y.-T. Huang, R. Rieger, An OOK body-channel transceiver front-end ASIC for distributed force measurement. Journal of Signal Processing Systems 64(2), 177–185 (2011)CrossRefGoogle Scholar
- 25.R.A. Huggins, Supercapacitors and electrochemical pulse sources. Solid State Ionics 134(1–2), 179–195 (2000)CrossRefGoogle Scholar
- 26.J. Jang, D. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless condition monitoring system powered by a Sub-100/spl mu/W vibration energy harvester. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 1082–1093 (2013)CrossRefGoogle Scholar
- 27.J. Kalupson, D. Ma, C.A. Randall, R. Rajagopalan, K. Adu, Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. The Journal of Physical Chemistry C 118(6), 2943–2952 (2014)CrossRefGoogle Scholar
- 28.E.G. Kilinc, G. Conus, C. Weber, B. Kawkabani, F. Maloberti, C. Dehollain, A system for wireless power transfer of micro-systems in-vivo implantable in freely moving animals. IEEE Sens. J. 14(2), 522–531 (2014)CrossRefGoogle Scholar
- 29.Y.-J. Kim, H.S. Bhamra, J. Joseph, P.P. Irazoqui, An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1028–1032 (2015)CrossRefGoogle Scholar
- 30.P.C. Krause, O. Wasynczuk, S.D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, vol. 75 (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
- 31.Q. Liu, M.H. Nayfeh, S.-T. Yau, Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources 195(21), 7480–7483 (2010)CrossRefGoogle Scholar
- 32.C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1(3), 254–266 (2011)CrossRefGoogle Scholar
- 33.M. Mark, Y. Chen, C. Sutardja, C. Tang, S. Gowda, M. Wagner, D. Werthimer, J. Rabaey, A 1 mm 3 2Mbps 330fJ/b transponder for implanted neural sensors, in 2011 Symposium on VLSI Circuits-Digest of Technical Papers 2011 Google Scholar
- 34.C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10(10), 4025–4031 (2010)CrossRefGoogle Scholar
- 35.C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevice 15(6), 973–983 (2013)CrossRefGoogle Scholar
- 36.V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, Ö. Oralkan, M. Öztürk, Flexible technologies for self-powered wearable health and environmental sensing. Proc. IEEE 103(4), 665–681 (2015)CrossRefGoogle Scholar
- 37.R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J.M. Carmena, M.M. Maharbiz, E. Alon, A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 50(1), 344–359 (2015)CrossRefGoogle Scholar
- 38.N.M. Neihart, R.R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52(11), 1950–1959 (2005)CrossRefGoogle Scholar
- 39.R. Saraswat, E. Rodriguez-Villegas, A low emission, low power non-linear frequency modulation based transmitter for implanted devices, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013, pp. 826–829. IEEEGoogle Scholar
- 40.Y.-C. Shih, T. Shen, B.P. Otis, A 2.3 W wireless intraocular pressure/temperature monitor. IEEE J. Solid-State Circuits 46(11), 2592–2601 (2011)CrossRefGoogle Scholar
- 41.A. Shukla, A. Banerjee, M. Ravikumar, A. Jalajakshi, Electrochemical capacitors: technical challenges and prognosis for future markets. Electrochim. Acta 84, 165–173 (2012)CrossRefGoogle Scholar
- 42.M. Waltari, K. Halonen, Reference voltage driver for low-voltage CMOS A/D converters, in Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on 2000, pp. 28–31. IEEEGoogle Scholar
- 43.H.A. Wheeler, Fundamental limitations of small antennas. Proceedings of the IRE 35(12), 1479–1484 (1947)CrossRefGoogle Scholar
- 44.A. Wong, D. McDonagh, O. Omeni, C. Nunn, M. Hernandez-Silveira, A. Burdett, Sensium: An ultra-low-power wireless body sensor network platform: design & application challenges, in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE 2009, pp. 6576–6579. IEEEGoogle Scholar
- 45.G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, T.S. Fisher, Graphitic Petal Electrodes for All-Solid-State Flexible Supercapacitors. Advanced Energy Materials 4(3), 1300515 (2014)CrossRefGoogle Scholar
- 46.Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A batteryless 19 W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid-State Circuits 48(1), 199–213 (2013)CrossRefGoogle Scholar