Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 2, pp 805–826 | Cite as

An Improved Global-Best-Guided Cuckoo Search Algorithm for Multiplierless Design of Two-Dimensional IIR Filters

  • Supriya DhabalEmail author
  • Palaniandavar Venkateswaran
Article
  • 58 Downloads

Abstract

Cuckoo search algorithm (CSA) is relatively a new optimization technique with less control parameters and strong exploration ability. Due to the random search associated with CSA, it requires large number of functional evaluations for obtaining optimal solution. An improved algorithm, named as improved global-best-guided CSA, is presented here based on the best solution of previous iteration for the optimal design of multiplierless two-dimensional recursive digital filters. The most important feature of the proposed algorithm is that it is completely self-adaptive with no tuning parameters, whereas in CSA the replacement factor needs to be adjusted. The proposed algorithm exhibits 52% improvement in fitness function evaluation (for p = 2) and the execution time is reduced by 56% in comparison with the existing algorithms. Further, the proposed algorithm has been tested for several benchmark problems and found to exhibit significant performance improvement.

Keywords

IIR filter CSD Levy flight Cuckoo search 

References

  1. 1.
    M. Basu, A. Chowdhury, Cuckoo search algorithm for economic dispatch. Energy 60(1), 99–108 (2013)Google Scholar
  2. 2.
    K. Chandrasekaran, S.P. Simon, Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evolut. Comput. 5, 1–16 (2012)Google Scholar
  3. 3.
    P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. Dhabal, P. Venkateswaran, An efficient g-best-guided Cuckoo Search algorithm for higher order two channel filter bank design. Swarm Evolut. Comput. 33, 68–84 (2017)Google Scholar
  5. 5.
    S. Dhabal, P. Venkateswaran, Efficient cosine modulated filter bank using multiplierless masking filter and representation of prototype filter coefficients using CSD. IJIGSP MECS 4(10), 25–33 (2012)Google Scholar
  6. 6.
    S. Dhabal, P. Venkateswaran, Two-Dimensional IIR filter design using simulated annealing based particle swarm optimization. J. Optim. (2014).  https://doi.org/10.1155/2014/239721 Google Scholar
  7. 7.
    W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    I.F. Gonos, L.I. Virirakis, N.E. Mastorakis, M.N.S. Swamy, Evolutionary design of 2-Dimensional recursive filters via the computer language GENETICA. IEEE Trans. Circuits Syst. II. 53(4), 254–258 (2006)Google Scholar
  9. 9.
    M. Hasanzadeh, M.R. Meybodi, M.M. Ebadzadeh, Adaptive cooperative particle swarm optimizer. Appl. Intell. 39(2), 397–420 (2013)Google Scholar
  10. 10.
    L. Idoumghar, M. Melkemi, R. Schott, M.I. Aouad, Hybrid PSO-SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems. Appl. Comput. Intell. Soft Comput. (2011).  https://doi.org/10.1155/2011/138078 Google Scholar
  11. 11.
    S. Kalathil, E. Elias, Design of multiplier-less sharp non-uniform cosine modulated filter banks for efficient channelizers in software defined radio. Eng. Sci. Technol. Int. J. 19(1), 147–160 (2016)Google Scholar
  12. 12.
    X. Li, M. Yin, Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. 298, 80–97 (2015)Google Scholar
  13. 13.
    J. Liu, H. Zhu, Q. Ma, L. Zhang, H. Xu, An Artificial Bee Colony algorithm with guide of global and local optima and asynchronous scaling factors for numerical optimization. Appl. Soft Comput. 37, 608–618 (2015)Google Scholar
  14. 14.
    J. Luo, Q. Wang, X. Xiao, A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization. Appl. Math. Comput. 219(20), 10253–10262 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    M. Manuel, E. Elias, Design of frequency response masking FIR filter in the canonic signed digit space using modified artificial bee colony algorithm. Eng. Appl. Artif. Intell. 26(1), 660–668 (2013)Google Scholar
  16. 16.
    N. Mastorakis, I.F. Gonos, M.N.S. Swamy, Design of two-dimensional recursive filters using genetic algorithms. IEEE Trans. Circuits Syst. 50(5), 634–639 (2003)Google Scholar
  17. 17.
    V.M. Mladenov, N. Mastorakis, Design of two-dimensional recursive filters by using neural networks. IEEE Trans. Neural Netw. 12(3), 585–590 (2001)Google Scholar
  18. 18.
    M.K. Naik, R. Panda, A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Appl. Soft Comput. 38, 661–675 (2016)Google Scholar
  19. 19.
    A. Nickabadi, M.M. Ebadzadeh, R. Safabakhsh, A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)Google Scholar
  20. 20.
    T. Niknam, M.R. Narimani, M. Jabbari, Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int. Trans. Electric. Energy Syst. 23(7), 975–1001 (2013)Google Scholar
  21. 21.
    D.T. Pham, E. Koc, Design of a two-dimensional recursive filter using the bees algorithm. Int. J. Autom. Comput. 7(3), 399–402 (2010)Google Scholar
  22. 22.
    R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)MathSciNetGoogle Scholar
  23. 23.
    E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)zbMATHGoogle Scholar
  24. 24.
    G.A. Ruiz, M. Granda, Efficient canonic signed digit recoding. Microelectron. J. 42(9), 1090–1097 (2011)Google Scholar
  25. 25.
    H.L. Shieh, C.C. Kuo, C.M. Chiang, Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 218(8), 4365–4383 (2011)zbMATHGoogle Scholar
  26. 26.
    D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)Google Scholar
  27. 27.
    J. Sun, W. Fang, W. Xu, A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters. IEEE Trans. Circuits Syst. II. 57(2), 141–145 (2010)Google Scholar
  28. 28.
    M.R. Tanweer, R. Auditya, S. Suresh, N. Sundararajan, N. Srikanth, Directionally driven self-regulating particle swarm optimization algorithm. Swarm Evolut. Comput. 28, 98–116 (2016)Google Scholar
  29. 29.
    M.R. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    J.T. Tsai, W.H. Ho, J.H. Chou, Design of two-dimensional recursive filters by using Taguchi-based immune algorithm. IET Signal Process. 2(2), 110–117 (2008)Google Scholar
  31. 31.
    E. Valian, S. Tavakoli, S. Mohanna, A. Haghi, Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 64(1), 459–468 (2013)Google Scholar
  32. 32.
    S. Walton, O.K. Morgan, K.M. Brown, Modified cuckoo search: a new gradient free optimization algorithm. Chaos Solitons Fract. 44(9), 710–718 (2011)Google Scholar
  33. 33.
    G.G. Wang, S. Deb, A.H. Gandomi, Z. Zhang, A.H. Alavi, Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016)Google Scholar
  34. 34.
    L. Xiangtao, Y. Minghao, A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem. Int. J. Prod. Res. 51(16), 4732–4754 (2013)Google Scholar
  35. 35.
    X.S. Yang, S. Deb, Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1, 330–343 (2010)zbMATHGoogle Scholar
  36. 36.
    X.S. Yang, S. Deb, Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNetaji Subhash Engineering CollegeKolkataIndia
  2. 2.Department of Electronics and Tele-Communication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations