Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 2, pp 699–715 | Cite as

A Generic Error-Free AI-Based Encoding for FFT Computation

  • Mohsen Moradi
  • Amir Hossein JahangirEmail author
Article
  • 55 Downloads

Abstract

This paper studies the challenge of accurate FFT computation. A generic and error-free encoding is proposed based on the algebraic integers (AIs). A wise AI-based encoding may greatly decrease the error due to the non-trivial twiddle factors in the FFT computation. Further, a new method for predicting the well-pruned architecture is presented which helps designing an optimized and low-cost architecture when using the AI-based encoding. In order to examine the proposed AI-based FFT computation and also the procedure of designing an optimized architecture, a custom AI-based 16-point radix-22 FFT architecture has been designed and implemented using 180-nm CMOS technology. Experimental results show that compared to the benchmark fixed-point architectures, the proposed architecture not only greatly improves the SQNR, but also provides higher throughput. Further, the power consumption and area overhead of the ASIC implementation both show an overhead of less than 45% compared to the reference architecture.

Keywords

Algebraic integers AI-encoding Fast Fourier transform (FFT) Signal-to-quantization-noise ratio (SQNR) 

References

  1. 1.
    H. Abdoli, H. Nikmehr, N. Movahedinia, F. De Dinechin, Improving energy efficiency of OFDM using adaptive precision reconfigurable FFT. Circuits Syst. Signal Process. 36(7), 2742–2766 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Al Na’mneh, W.D. Pan, Five-step FFT algorithm with reduced computational complexity. Inf. Process. Lett. 101(6), 262–267 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. Arunachalam, A.N.J. Raj, Efficient VLSI implementation of FFT for orthogonal frequency division multiplexing applications. IET Circuits Devices Syst. 8(6), 526–531 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Baghaie, V. Dimitrov, Systolic implementation of real-valued discrete transforms via algebraic integer quantization. Comput. Math Appl. 41(10–11), 1403–1416 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Balakrishnan, M.M. Hasan, K.A. Wahid, An efficient algorithm for Daubechies lifting wavelets using algebraic integers. Can. J. Electr. Comput. Eng. 37(3), 127–134 (2014)CrossRefGoogle Scholar
  6. 6.
    O. Cetin, S. Keskin, T. Kocak, Real-time FFT computation using GPGPU for OFDM-based systems. Circuits Syst. Signal Process. 35(3), 1021–1044 (2016)CrossRefGoogle Scholar
  7. 7.
    W.H. Chang, T.Q. Nguyen, On the fixed-point accuracy analysis of FFT algorithms. IEEE Trans. Signal Process. 56(10), 4673–4682 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T.D. Chiueh, P.Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications (Wiley, Singapore, 2007)CrossRefGoogle Scholar
  9. 9.
    T. Cho, H. Lee, A high-speed low-complexity modified radix-25 FFT processor for high rate WPAN applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21(1), 187–191 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Cozzens, L. Finkelstein, Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers. IEEE Trans. Inf. Theory 31(5), 580–588 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    V.S. Dimitrov, G.A. Jullien, W.C. Miller, A new DCT algorithm based on encoding algebraic integers. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 1377–1380 (1998)Google Scholar
  12. 12.
    V.S. Dimitrov, K. Wahid, G. Jullien, Multiplication-free 8 × 8 2D DCT architecture using algebraic integer encoding. IEE Electron. Lett. 40(20), 1310–1311 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Edirisuriya, A. Madanayake, R.J. Cintra, V.S. Dimitrov, N. Rajapaksha, A single-channel architecture for algebraic integer based 8 × 8 2-D DCT computation. IEEE Trans. Circuits Syst. Video Technol. 23(12), 2083–2089 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Fan, X. Meng, X. Yao, Y. Yan, FFT-based parallel encoding algorithm for structured LDPC codes, in 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015)Google Scholar
  15. 15.
    M. Garrido, J. Grajal, M.A. Sanchez, O. Gustafsson, Pipelined radix-2(k) feedforward FFT architectures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 23–32 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Koutsoyannis, P.A. Milder, C.R. Berger, M. Glick, J.C. Hoe, M. Püschel, Improving fixed-point accuracy of FFT cores in O-OFDM systems, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1585–1588 (2012)Google Scholar
  17. 17.
    J.C. Kuo, C.H. Wen, C.H. Lin, A.Y. Wu, VLSI design of a variable-length FFT/IFFT processor for OFDM-based communication systems. EURASIP J. Appl. Sig. Process. 13, 1306–1316 (2003)Google Scholar
  18. 18.
    T.Y. Lee, C.H. Huang, W.C. Chen, M.J. Liu, A low-area dynamic reconfigurable MDC FFT processor design. Microprocess. Microsyst. 42, 227–234 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Madanayake, R.J. Cintra, D. Onen, V.S. Dimitrov, N. Rajapaksha, L.T. Bruton, A. Edirisuriya, A row-parallel 8 × 8 2-D DCT architecture using algebraic integer-based exact computation. IEEE Trans. Circuits Syst. Video Technol. 22(6), 915–929 (2012)CrossRefGoogle Scholar
  20. 20.
    S.K. Madishetty, A. Madanayake, R.J. Cintra, V.S. Dimitrov, D.H. Mugler, VLSI architectures for the 4-Tap and 6-Tap 2-D Daubechies wavelet filters using algebraic integers. IEEE Trans. Circuits Syst. I 60(6), 1455–1468 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Maharatna, E. Grass, U. Jagdhold, A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM. IEEE J. Solid-State Circuits 39(3), 484–493 (2004)CrossRefGoogle Scholar
  22. 22.
    O. Nibouche, S. Boussakta, M. Darnell, M. Benaissa, Algorithms and pipeline architectures for 2-D FFT and FFT-like transforms. Digit. Signal Proc. 20(4), 1072–1086 (2010)CrossRefGoogle Scholar
  23. 23.
    L.Z. Shi, J.M. Guo, Design of an 8-channel FFT processor for IEEE 802.11 ac MIMO-OFDM WLAN system. Circuits Syst. Signal Process. 35(10), 3759–3769 (2016)CrossRefGoogle Scholar
  24. 24.
    C.Y. Wang, C.B. Kuo, J.Y. Jou, Hybrid word-length optimization methods of pipelined FFT processors. IEEE Trans. Comput. 56(8), 1105–1118 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Wang, C. Xiong, K. Zhang, J. Wei, Fixed-point analysis and parameter optimization of the radix-2(k) pipelined FFT processor. IEEE Trans. Signal Process. 63(18), 4879–4893 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Wang, F. Wang, S. Wei, Z. Li, A pipelined area-efficient and high-speed reconfigurable processor for floating-point FFT/IFFT and DCT/IDCT computations. Microelectron. J. 47, 19–30 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Yang, Y.Z. Xie, L. Chen, H. Chen, Y. Deng, Design of a configurable fixed-point FFT processor, in Proceedings of IET International Radar Conference (2015)Google Scholar
  28. 28.
    W.F. Yen, S.D. You, Y.C. Chang, Real-time FFT with pre-calculation. Comput. Electr. Eng. 35(3), 435–440 (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    H. Yoo, I.C. Park, Partially parallel encoder architecture for long polar codes. IEEE Trans. Circuits Syst. II Express Briefs 62(3), 306–310 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Yun, F. Wu, G.E. Sobelman, X. Zhou, A low-complexity FFT Processor using two-dimensional algebraic integer encoding, in 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT 2016)Google Scholar
  31. 31.
    Y. Zhou, J.M. Noras, S.J. Shepherd, Novel design of multiplier-less FFT processors. Sig. Process. 87(6), 1402–1407 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringSharif University of TechnologyTehranIran

Personalised recommendations