Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 356–370 | Cite as

Grouping and Selecting Singular Spectrum Analysis Components for Denoising Via Empirical Mode Decomposition Approach

  • Peiru Lin
  • Weichao Kuang
  • Yuwei Liu
  • Bingo Wing-Kuen LingEmail author


This paper proposes a threshold-free method for grouping and selecting the singular spectrum analysis (SSA) components for performing the signal denoising via the empirical mode decomposition (EMD) approach. First, the total number of the groups of the SSA components is selected to be the same as the total number of the intrinsic mode functions (IMFs) of the signal. The SSA components are assigned to the group where the absolute correlation coefficient between the IMF and the SSA component is the highest. This grouping method is implemented using the matching pursuit algorithm. Then, the groups of the SSA components are selected based on the selection criterion used in an existing EMD denoising method. As the EMD denoising approach is a time-domain approach and the SSA components are represented in the transformed domain, our proposed method exploits both the time-domain and the transformed-domain information for performing the denoising. Computer numerical simulation results show that the signal-to-noise ratios of common practical signals denoised by our proposed method are higher than those denoised by the existing methods.


Singular spectrum analysis Empirical mode decomposition Grouping Denoising Matching pursuit algorithm 



This paper is supported partly by the National Nature Science Foundation of China (Nos. U1701266, 61372173, 61471132 and 61671163), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (No. 501130144), the Natural Science Foundation of Guangdong Province, China (No. 2014A030310346), and the Science and Technology Planning Project of Guangdong Province, China (No. 2015A030401090).


  1. 1.
    S.A. Akar, S. Kara, F. Latifoglu, V. Bilgic, Investigation of the noise effect on fractal dimension of EEG in schizophrenia patients using wavelet and SSA-based approaches. Biomed. Signal Process. Control 18, 42–48 (2015)CrossRefGoogle Scholar
  2. 2.
    N. Alharbi, Z. Ghodsi, H. Hassani, Noise correction in gene expression data: a new approach based on subspace method. Math. Methods Appl. Sci. 39(13), 3750–3757 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Antoniadis, J. Bigot, T. Sapatinas, Wavelet estimators in nonparametric regression: a comparative simulation study. J. Stat. Softw. 6, 1–83 (2001)CrossRefGoogle Scholar
  4. 4.
    A.O. Boudraa, J.C. Cexus, EMD-based signal filtering. IEEE Trans. Instrum. Meas. 56(6), 2196–2202 (2007)CrossRefGoogle Scholar
  5. 5.
    A.O. Boudraa, J.C. Cexus, Z. Saidi, EMD-based signal noise reduction. Int. J. Inf. Commun. Eng. 1(1), 33–37 (2004)Google Scholar
  6. 6.
    J.B. Elsner, A.A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series Analysis (Springer, Berlin, 1996)CrossRefGoogle Scholar
  7. 7.
    M.B. Figueiredo, A.D. Almeida, B. Ribeiro, Wavelet decomposition and singular spectrum analysis for electrical signal denoising, in IEEE International Conference on Systems, Man, and Cybernetics, 2011, pp. 3329–3334Google Scholar
  8. 8.
    P. Flandrin, G. Rilling, P. Gonçalves, Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112–114 (2004)CrossRefGoogle Scholar
  9. 9.
    F. Frappart, G. Ramillien, P. Maisongrande, M.P. Bonnet, Denoising satellite gravity signals by independent component analysis. IEEE Geosci. Remote Sens. Lett. 7(3), 421–425 (2010)CrossRefGoogle Scholar
  10. 10.
    N. Golyandina, V. Nekrutkin, A.A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques (CRC/Chapman & Hall, Boca Raton, 2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    H. Hassani, Singular spectrum analysis: methodology and comparison. J. Data Sci. 5(2), 239–257 (2007)Google Scholar
  12. 12.
    H. Hassani, R. Mahmoudvand, M. Zokaei, Separability and window length in singular spectrum analysis. C.R. Math. 349(17–18), 987–990 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N.E. Huang, S.S.P. Shen, Hilbert–Huang Transform and Its Applications (World Scientific, Singapore, 2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shin, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998(454), 903–995 (1971)zbMATHGoogle Scholar
  15. 15.
    A. Komaty, A.O. Boudraa, B. Augier, D. Dare-Emzivat, EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE Trans. Instrum. Meas. 63(1), 27–34 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Kuang, B.W.K. Ling, Z. Yang, Parameter free and reliable signal denoising based on constants obtained from IMFs of white Gaussian noise. Measurement 102, 230–243 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Lofgren, L. Liu, O. Edfors, P. Nilsson, Improved matching-pursuit implementation for LTE channel estimation. IEEE Trans. Circuits Syst. 61(1), 226–237 (2013)CrossRefGoogle Scholar
  18. 18.
    S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    R.B. Panerai, A.L.A.S. Ferriera, O.F. Brum, Principal component analysis of multiple noninvasive blood flow derived signals. IEEE Trans. Biomed. Eng. 35(7), 533–538 (1988)CrossRefGoogle Scholar
  20. 20.
    F. Romero, F.J. Alonso, J. Cubero, G. Galán-Marín, An automatic SSA-based de-noising and smoothing technique for surface electromyography signals. Biomed. Signal Process. Control 18, 317–324 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Sanei, T.K.M. Lee, V. Abolghasemi, A new adaptive line enhancer based on singular spectrum analysis. IEEE Trans. Biomed. Eng. 59(2), 428–434 (2011)CrossRefGoogle Scholar
  22. 22.
    S.R. Subramaniam, B.W.K. Ling, A. Georgakis, Filtering in rotated time-frequency domains with unknown noise statistics. IEEE Trans. Signal Process. 60(1), 489–493 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G. Wang, X.Y. Chen, F.L. Qiao, Z.H. Wu, N.E. Huang, On intrinsic mode function. Adv. Adapt. Data Anal. 2(3), 277–293 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Wang, H.G. Ma, G.Q. Liu, D.G. Zuo, Selection of window length for singular spectrum analysis. J. Franklin Inst. 352(4), 1541–1560 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Z. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460(2046), 1597–1611 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Z.W. Wu, M.L. Yao, H.G. Ma, W.M. Jia, De-noising MEMS inertial sensors for low-cost vehicular attitude estimation based on singular spectrum analysis and independent component analysis. Electron. Lett. 49(14), 892–893 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Yang, B.W.K. Ling, C. Bingham, Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum. Measurement 46(8), 2481–2491 (2013)CrossRefGoogle Scholar
  28. 28.
    Z. Yang, B.W.K. Ling, C. Bingham, Joint empirical mode decomposition and sparse binary programming for underlying trend extraction. IEEE Trans. Instrum. Meas. 62(10), 2673–2682 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Zabalza, J. Ren, Z. Wang, S. Marshall, J. Wang, Singular spectrum analysis for effective feature extraction in hyperspectral imaging. IEEE Geosci. Remote Sens. Lett. 11(11), 1886–1890 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peiru Lin
    • 1
  • Weichao Kuang
    • 1
  • Yuwei Liu
    • 1
  • Bingo Wing-Kuen Ling
    • 1
    Email author
  1. 1.School of Information EngineeringGuangdong University of TechnologyGuangzhouChina

Personalised recommendations