Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 26–40 | Cite as

Dual-Output Operational Transconductance Amplifier-Based Electronically Controllable Memristance Simulator Circuit

  • Zehra Gulru Cam TaskiranEmail author
  • Umut Engin Ayten
  • Herman Sedef


In this paper, a new floating analog memristance simulator circuit based on dual-output operational transconductance amplifiers (DO-OTA) and passive elements is proposed. Theoretical derivations are presented which describe the circuit characteristics. DO-OTA active elements in the proposed circuit are realized with CMOS transistors, and PSPICE simulations are performed. Also workability of the circuit is tested experimentally by using commercially available integrated circuits. Theoretical derivations are validated with PSPICE simulation and experimental results. All results show that proposed simulator circuit provides frequency-dependent pinched hysteresis loop and nonvolatility feature. Exciting frequency, minimum and maximum memristance values and memristance range can be adjustable electronically with bias currents by changing the transconductances of DO-OTAs. Simulator circuit has a frequency range of 1 Hz–180 kHz.


Memristor Simulator Operational transconductance amplifier Electronically controllable 


  1. 1.
    M.T. Abuelmaatti, Z.J. Khalifa, A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circuits Signal Process. 86(1), 141–147 (2016)CrossRefGoogle Scholar
  2. 2.
    S.P. Adhikari, MPd Sah, H. Kim, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)CrossRefGoogle Scholar
  3. 3.
    A.G. Alharbi, M.E. Fouda, Z.J. Khalifa, M.H. Cowdhury, in 2016 IEEE 59th International Midwest Symposium on Simple Generic Memristor Emulator for Voltage-Controlled Models, Circuits and Systems (MWSCAS) (2016), pp. 1558–3899Google Scholar
  4. 4.
    A.G. Alharbi, M.E. Fouda, M.H. Cowdhury, A novel flux-controlled memristive emulator for analog applications, advances in memristors, memristive devices and systems. Stud. Comput. Intell. 701, 493–511 (2017)Google Scholar
  5. 5.
    A.G. Alharbi, M.E. Fouda, Z.J. Khalifa, M.H. Cowdhury, Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5, 5399–5409 (2017)CrossRefGoogle Scholar
  6. 6.
    Z.G. Cam, H. Sedef, A new floating memristance simulator circuit based on second generation current conveyor. J. Circuits Syst. Comput. 26(2), 1750029 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  8. 8.
    Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    K. Kaewdang, W. Surakampontorn, On the realization of electronically current-tunable CMOS OTA. AEU Int. J. Electron. Commun. 61, 300–306 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Kim, MPd Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    I. Koymen, E.M. Drakakis, in 14th International Workshop on CMOS-Based Nanopower Memristor Dynamics Emulator, Cellular Nanoscale Networks and Their Applications (CNNA) (2014)Google Scholar
  12. 12.
    V.H. Nguyen, K.Y. Sohn, H. Song, On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale TiO2 thin-film memristor device. J. Comput. Electron. 15(3), 993–1002 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Sozen, U. Cam, Electronically tunable memristor emulator circuit. Analog Integr. Circuits Signal Process. 89(3), 655–663 (2016)CrossRefGoogle Scholar
  14. 14.
    D.B. Strukov, G.S. Snider, D.R. Stewart, S.R. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  15. 15.
    Texas Instruments, LM13700 dual operational transconductance amplifiers with linearizing diodes and buffers. LM13700 datasheet, Rev. F. (2015)Google Scholar
  16. 16.
    Texas Instruments, Low cost analog multiplier. AD633 datasheet, Rev. K. (2016)Google Scholar
  17. 17.
    L. Wei, W. Fa-Qiang, M. Xi-Kui, Exponential flux-controlled memristor model and its floating emulator. Chin. Phys. B 24(11), 118401 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Yang, H. Choi, S. Park, M.P. Sah, H. Kim, L.O. Chua, A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30(1), 015007 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Yener, H.H. Kuntman, Fully CMOS memristor based chaotic circuit. Radioengineering 23(4), 1140–1149 (2014)Google Scholar
  20. 20.
    A. Yesil, Y. Babacan, F. Kacar, A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zehra Gulru Cam Taskiran
    • 1
    Email author
  • Umut Engin Ayten
    • 1
  • Herman Sedef
    • 1
  1. 1.Yildiz Technical UniversityIstanbulTurkey

Personalised recommendations