Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 242–258 | Cite as

A Low-Cost Tiny-Size Successive Approximation ADC for Applications Requiring Low-Resolution Conversion with Moderate Sampling Rate

  • Hamed AminzadehEmail author
Article
  • 37 Downloads

Abstract

The required silicon die area of successive approximation analog-to-digital converters (SA-ADCs) increases rapidly with ADC resolution. In particular, a main design challenge for SA-ADCs is the number of unit capacitors required for the internal charge distribution capacitive-array digital-to-analog converter (DAC), which increases exponentially with a monotonic increase in the number of the output bits. Therefore, the overall performance of the final design is affected by the huge die area and, in turn, the switching energy of the capacitive-array DAC. In this article, a tiny-size MOSFET-only SA-ADC topology is proposed for those applications which require a low-resolution and moderate to high sampling-rate analog-to-digital converters prior to digital processing units. To this end, the widely used metal–insulator–metal (MIM) capacitors of mixed-signal CMOS technologies are replaced with area-efficient MOS capacitors available in every technology. The effectiveness of this implementation is validated through successful simulation of a 5-bit 20 MS/s MOSFET-only SA-ADC in a low-cost 0.18-µm digital CMOS technology. The ADC consumes a total power of 76.88 µW from a 1.2-V voltage supply, while it occupies a die size of only 190 µm2. This area is roughly 40% lower than 310 µm2, the die area of an equivalent design based on MIM capacitors.

Keywords

Area saving Capacitive-array DAC Capacitor switching MOSFET-only Power dissipation Successive approximation ADC Switched-capacitor circuits 

References

  1. 1.
    A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34, 599–606 (1999)CrossRefGoogle Scholar
  2. 2.
    E. Alpman, H. Lakdawala, L.R. Carley, K. Soumyanath, A 1.1 V 50 mW 2.5 GS/s 7 b time-interleaved C-2C SAR ADC in 45 nm LP digital CMOS, in IEEE ISSCC Digest. Technical papers (2009), pp. 76–77Google Scholar
  3. 3.
    H. Aminzadeh, MOSFET-only pipelined analogue-to-digital converters: non-linearity compensation by digital calibration. Int. J. Electron. 101, 158–173 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Aminzadeh, MOSFET-only two-stage operational amplifiers with Miller compensation: design and fabrication in nano-scale CMOS. J. Circuits Syst. Comput. 22, 135006501–135006513 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Aminzadeh, R. Lotfi, K. Mafinezhad, Design of low-power single-stage operational amplifiers based on an optimized settling model. Analog Integr. Circuits Signal Process. 58, 153–160 (2009)CrossRefGoogle Scholar
  6. 6.
    S.U. Ay, A sub-1 Volt 10-bit supply boosted SAR ADC design in standard CMOS. Analog Integr. Circuits Signal Process. 66, 213–221 (2011)CrossRefGoogle Scholar
  7. 7.
    T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuit Design (Wiley, Hoboken, 2011)Google Scholar
  8. 8.
    Y. Chang, C.S. Wang C.K. Wang, A 8-bit 500-KS/s low power SAR ADC for bio-medical applications, in IEEE ASSCC Digest. Technical papers (2007), pp. 228–231Google Scholar
  9. 9.
    S.W.M. Chen, R.W. Brodersen, A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-µm CMOS, in IEEE ISSCC Digest. Technical papers (2006), pp. 574–575Google Scholar
  10. 10.
    L. Chen, A. Sanyal, J. Ma, N. Sun, A 24-uW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique, in IEEE European Solid-State Circuits Conference (2014), pp. 219–222Google Scholar
  11. 11.
    R. Ding, H. Liang, S. Liu, A novel switching scheme and area-saving architecture for SAR ADC. Analog Integr. Circuits Signal Process. 91, 149–154 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Fazel, S. Saeedi, M. Atarodi, Pipelining method for low-power and high-speed SAR ADC design. Analog Integr. Circuits Signal Process. 87, 353–368 (2016)CrossRefGoogle Scholar
  13. 13.
    A.R. Ghasemi, M. Saberi, R. Lotfi, A low-power capacitor switching scheme with low common-mode voltage variation for successive approximation ADC. Microelectron. J. 61(12), 15–20 (2017)CrossRefGoogle Scholar
  14. 14.
    B.P. Ginsburg, A.P. Chandrakasan, Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver. IEEE J. Solid-State Circuits 42, 247–257 (2007)CrossRefGoogle Scholar
  15. 15.
    H.C. Hong, G.M. Lee, A 65-fJ/conversion-step 0.9-V 200 kS/s rail-to-rail 8-bit successive-approximation ADC. IEEE J. Solid-State Circuits 42, 2161–2168 (2007)CrossRefGoogle Scholar
  16. 16.
    C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45, 731–740 (2010)CrossRefGoogle Scholar
  17. 17.
    F. Maloberti, Data Converters (Springer, New York, 2007)Google Scholar
  18. 18.
    R. Ozgun, J. Lin, F. Tejada, P. Pouliquen, A.G. Andreou, A low-power 8-bit SAR ADC for a QCIF image sensor, in IEEE International Symposium on Circuits and Systems (2011), pp. 841–844Google Scholar
  19. 19.
    B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York City, 2001)Google Scholar
  20. 20.
    T. Tille, J. Sauerbrey, M. Mauthe, D. Schmitt-landsiedel, Design of low-voltage MOSFET only sigma-delta modulators in standard digital CMOS technology. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 96–109 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    T. Tille, J. Sauerbrey, D. Schmitt-Landsiedel, A 1.8-V MOSFET-only Σ∆ modulator using substrate biased depletion-mode MOS capacitors in series compensation. IEEE J. Solid-State Circuits 36, 1041–1047 (2001)CrossRefGoogle Scholar
  22. 22.
    X.Y. Tong, Z.M. Zhu, Y.T. Yang, L.X. Liu, D/A conversion networks for high-resolution SAR A/D converters. Electron. Lett. 47, 169–171 (2011)CrossRefGoogle Scholar
  23. 23.
    X. Wang, H. Huang, Q. Li, Design considerations of ultralow-voltage self-calibrated SAR ADC. IEEE Trans. Circuits Syst. II Express Briefs 62, 337–341 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Wu, J. Wu, J. Huang, Energy-efficient switching scheme for ultra-low voltage SAR ADC. Analog Integr. Circuits Signal Process. 90, 507–511 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Xie, G. Wen, J. Liu, Y. Wang, Energy-efficient hybrid capacitor switching scheme for SAR ADC. Electron. Lett. 50, 22–23 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Yoshizawa, Y. Huang, P.F. Ferguson, G.C. Temes, MOSFET-only switched-capacitor circuits in digital CMOS technology. IEEE J. Solid-State Circuits 34, 734–747 (1999)CrossRefGoogle Scholar
  27. 27.
    C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48, 482–483 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Zamprogno, A. Minuti, F. Girardi, P. Confalonieri, G. Nicollini, A 10-b 100-kS/s 1-mW general-purpose ADC for cellular telephones. IEEE Trans. Circuits Syst. II Express Briefs 59, 138–142 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Zhang, R. Ding, Z. Zhu, 99.2% energy saving and high-linearity switching method for SAR ADCs. Analog Integr. Circuits Signal Process. 91, 93–96 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45, 1111–1121 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Zhu, Y. Xiao, X. Song, VCM-based monotonic capacitor switching scheme for SAR ADC. Electron. Lett. 49, 327–329 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringPayame Noor UniversityTehranIran

Personalised recommendations