Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 455–469 | Cite as

A Variable Step-Size Shrinkage Set-Membership Affine Projection Algorithm for Noisy Input

  • Kaili Yin
  • Haiquan ZhaoEmail author
Short Paper
  • 85 Downloads

Abstract

To solve the conflicting requirement of fast convergence and low steady-state misalignment, a variable step-size shrinkage set-membership affine projection algorithm is proposed, which is efficient for the correlated input signal and noisy input environments. The new variable step size is derived by minimizing the square of noise-free a posteriori error, and the shrinkage method is employed to estimate the second-order statistics of the noise-free a priori error vector. Moreover, the stability analysis of the algorithm is conducted. Simulations demonstrate the effectiveness of the proposed algorithm for various noisy input environments.

Keywords

Noisy input Affine projection algorithm Variable step size Shrinkage Echo cancelations 

Notes

Acknowledgements

The authors would like to thank Dr. Lu Lu (Southwest Jiaotong University) for polishing the language. This work was partially supported by National Science Foundation of People’s Republic of China (Grants 61571374, 61271340, 61433011).

References

  1. 1.
    J. Benesty, H. Rey, L.R. Vega, S. Tressens, A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13(10), 581–584 (2006)CrossRefGoogle Scholar
  2. 2.
    M.Z.A. Bhotto, A. Antoniou, Robust set-membership affine-projection adaptive-filtering algorithm. IEEE Trans. Signal Process. 60(1), 73–81 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.Z.A. Bhotto, A. Antoniou, A family of shrinkage adaptive filtering algorithms. IEEE Trans. Signal Process. 61(7), 1689–1697 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M.T. Chen, F. Ding, L. Xu, T. Hayat, A. Alsaedi, Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise. J. Frankl. Inst. 354(17), 7885–7898 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 14.
    J. Cui, H. Shao, A robust set-membership affine projection algorithm based on outlier estimation method, in ISCC (2015), pp. 1–8Google Scholar
  6. 5.
    R.C. de Lamare, P.S.R. Diniz, Set-membership adaptive algorithms based on time-varying error bounds for CDMA interference suppression. IEEE Trans. Veh. Technol. 58(2), 644–654 (2009)CrossRefGoogle Scholar
  7. 6.
    F. Ding, Y. Gu, Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delay. Circuits Syst. Signal Process. 32(2), 585–599 (2013)MathSciNetCrossRefGoogle Scholar
  8. 7.
    F. Ding, Y. Gu, Parameter estimation for an input nonlinear state space system with time delay. J. Frankl. Inst. Eng. Appl. Math. 351(12), 5326–5339 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 8.
    F. Ding, X.H. Wang, Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems. Circuits Syst. Signal Process. 36(4), 1393–1405 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 9.
    F. Ding, Y.J. Wang, J.Y. Dai, Q. Li, Q. Chen, A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input–output data filtering. J. Frankl. Inst. 354(15), 6938–6955 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 10.
    F. Ding, X.H. Wang, L. Mao, L. Xu, Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering. Digital Signal Process. 62, 211–223 (2017)CrossRefGoogle Scholar
  12. 11.
    D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000)CrossRefGoogle Scholar
  13. 12.
    Y. Gu, F. Ding, J.H. Li, States based iterative parameter estimation for a state space model with multi-state delays using decomposition. Signal Process. 106, 294–300 (2015)CrossRefGoogle Scholar
  14. 13.
    S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall, New Jersey, 2002)zbMATHGoogle Scholar
  15. 15.
    M.H. Li, X.M. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 147, 23–34 (2018)CrossRefGoogle Scholar
  16. 16.
    M.H. Li, X.M. Liu, F. Ding, The gradient based iterative estimation algorithms for bilinear systems with autoregressive noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M.V.S. Lima, T.N. Ferreira, W.A. Martins, P.S.R. Diniz, Sparsity-aware data-selective adaptive filters. IEEE Trans. Signal Process. 62(17), 4557–4572 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Lu, H. Zhao, Adaptive combination of affine projection sign subband adaptive filters for modeling of acoustic paths in impulsive noise environments. Int. J. Speech Technol. 19(4), 907–917 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Lu, H. Zhao, B. Chen, Collaborative adaptive Volterra filters for nonlinear system identification in α-stable noise environments. J. Frankl. Inst. 353(17), 4500–4525 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    L. Lu, H. Zhao, K. Li, B. Chen, A novel normalized sign algorithm for system identification under impulsive noise interference. Circuits Syst. Signal Process. 35(9), 3244–3265 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    U. Mahbub, S.A. Fattah, A single-channel acoustic echo cancellation scheme using gradient-based adaptive filtering. Circuits Syst. Signal Process. 33(5), 1541–1572 (2014)CrossRefGoogle Scholar
  22. 22.
    V.J. Mathews, Z. Xie, A stochastic gradient adaptive filter with gradient adaptive step size. IEEE Trans. Signal Process. 41(6), 2075–2087 (1993)CrossRefzbMATHGoogle Scholar
  23. 23.
    K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984)MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Shi, H. Zhao, Variable step-size distributed incremental normalised LMS algorithm. Electron. Lett. 52(7), 519–521 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Shi, H. Zhao, L1-norm constrained normalized subband adaptive filter algorithm with variable norm-bound parameter and improved version. Signal Image Video Process. 11(5), 865–871 (2017)CrossRefGoogle Scholar
  26. 26.
    D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Frankl. Inst. Eng. Appl. Math. 352(11), 5292–5370 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D.Q. Wang, Z. Zhang, J.Y. Yuan, Maximum likelihood estimation method for dual-rate Hammerstein systems. Int. J. Control Autom. Syst. 15, 698–705 (2017)CrossRefGoogle Scholar
  28. 28.
    Y.J. Wang, F. Ding, L. Xu, Some new results of designing an IIR filter with colored noise for signal processing. Digital Signal Process. 72, 44–58 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H.X. Wen, X.H. Lai, L. Chen, Z. Cai, Nonparametric VSS-APA based on precise background noise power estimate. J. Cent. South Univ. 22, 251–260 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Werner, P.S.R. Diniz, Set-membership affine projection algorithm. IEEE Signal Process. Lett. 8(8), 231–235 (2001)CrossRefGoogle Scholar
  31. 31.
    Y. Yu, H. Zhao, An improved variable step-size NLMS algorithm based on a Versiera function, in IEEE ICSPCC (2013), pp. 1–4Google Scholar
  32. 32.
    Y. Yu, H. Zhao, Novel sign subband adaptive filter algorithms with individual weighting factors. Signal Process. 122, 14–23 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Yu, H. Zhao, Robust incremental normalized least mean square algorithm with variable step sizes over distributed networks. Signal Process. 144, 1–6 (2018)CrossRefGoogle Scholar
  34. 34.
    Y. Yu, H. Zhao, B. Chen, Sparseness-controlled proportionate affine projection sign algorithms for acoustic echo cancellation. Circuits Syst. Signal Process. 34(12), 3933–3948 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Z. Zheng, H. Zhao, Proportionate affine projection algorithm based on coefficient difference, in IEEE ICSPCC (2014), pp. 115–119Google Scholar
  36. 36.
    X. Zhang, F. Ding, A. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    S. Zhang, J. Zhang, H. Han, Robust shrinkage normalized sign algorithm in an impulsive noise environment. IEEE Trans. Circuits Syst. II: Express Briefs 64(1), 91–95 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Zhao, Z. Zheng, Bias-compensated affine-projection-like algorithms with noisy input. Electron. Lett. 52(9), 712–714 (2016)CrossRefGoogle Scholar
  39. 39.
    H. Zhao, Z. Zheng, L0 norm constraint set-membership affine projection algorithm with coefficient vector reuse. Electron. Lett. 52(7), 560–562 (2016)CrossRefGoogle Scholar
  40. 40.
    Z. Zheng, H. Zhao, Memory improved proportionate M-estimate affine projection algorithm. Electron. Lett. 51(6), 525–526 (2015)CrossRefGoogle Scholar
  41. 41.
    Z. Zheng, H. Zhao, Bias-compensated normalized subband adaptive filter algorithm. IEEE Signal Process. Lett. 23(6), 809–813 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Key Laboratory of Magnetic Suspension Technology and Maglev VehicleMinistry of EducationChengduChina

Personalised recommendations