Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 118–137 | Cite as

FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition

  • Qasim Waheed Malik
  • Naveed ur RehmanEmail author
  • Sikender Gull
  • Shoaib Ehsan
  • Klaus D. McDonald-Maier


A field programmable gate array (FPGA)-based parallel architecture for the real-time and online implementation of the bivariate extension of the empirical mode decomposition (EMD) algorithm is presented. Multivariate extensions of EMD have attracted significant attention in recent years owing to their scope in applications involving multichannel and multidimensional data processing, e.g. biomedical engineering, condition monitoring, image fusion. However, these algorithms are computationally expensive due to the empirical and data-driven nature of these methods. That has hindered the utilisation of EMD, and particularly its bivariate and multivariate extensions, in real-time applications. The proposed parallel architecture is aimed at bridging this gap through real-time computation of the bivariate EMD algorithm. The crux of the architecture is the simultaneous computation of multiple signal projections, locating their local extrema and finally the calculation of their associated complex-valued envelopes for the estimation of local mean. The architecture is implemented on a Xilinx Kintex 7 FPGA and offers significant computational improvements over the existing software-based sequential implementations of bivariate EMD.


Bivariate empirical mode decomposition Field programmable gate array (FPGA) Signal decomposition Time-frequency analysis 


  1. 1.
    U. Abdullah, N. Rehman, M. Khan, D.P. Mandic, A multivariate EMD based approach to Pan-sharpening. IEEE Trans. Geosci. Remote Sens. 53(7), 3974–3984 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Agrafioti, D. Hatzinakos, A.K. Anderson, ECG pattern analysis for emotion detection. IEEE Trans. Affect. Comput. 3, 102–115 (2012)CrossRefGoogle Scholar
  3. 3.
    M. U. Altaf, T. Gautama, T. Tanaka, D. P. Mandic, Rotation invariant complex empirical mode decomposition, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (2007)Google Scholar
  4. 4.
    L. W. Chang, M. Lo, N. Anssari, K. Hsu, N. E. Huang, W. W. Hwu, Parallel implementation of multidimensional ensemble empirical mode decomposition, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), pp. 1621–1624, PragueGoogle Scholar
  5. 5.
    D. Chen, D. Li, M. Xiang, H. Bao, X. Li, GPGPU-aided ensemble empirical mode decomposition for EEG analysis during anaesthesia. IEEE Trans. Inf Technol. Biomed. 14(6), 1417–1427 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Flandrin, Empirical Mode Decomposition, accessed (May 2015).
  7. 7.
    P. Flandrin, P. Gonalvs, G. Rilling, Detrending and Denoising with Empirical Mode Decompositions, in Proceedings of the European Signal Processing Conference (EUSIPCO), Vienna, Austria, pp. 1581–1584 (2004)Google Scholar
  8. 8.
    Y.Y. Hong, Y.Q. Bao, FPGA implementation for real-time empirical mode decomposition. IEEE Trans. Instrum. Meas. 61(12), 3175–3185 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.E. Huang, M.C. Wu, S.R. Long, S.S.P. Shen, W. Qu, P. Gloersen, K.L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectrum analysis. Proc. R. Soc. A 459(2037), 2317–2345 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N.E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Z. Quanan, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M.H. Lee, K.K. Shyu, P.L. Lee, C.M. Huang, Y.J. Chiu, Hardware implementation of EMD using DSP and FPGA for online signal processing. IEEE Trans. Industr. Electron. 58(6), 2473–2481 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Lei, J. Lin, Z. He, M.J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1), 108–126 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Y. Lu, Fast intrinsic mode decomposition of time series data with sawtooth transform, ORACLE, Redwood Shores, CA, pp. 1–13 (2007), Technical reportGoogle Scholar
  14. 14.
    D.P. Mandic, N. Rehman, Z. Wu, N.E. Huang, Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process. Mag. 30(6), 74–86 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Park, D. Looney, N. Rehman, D.P. Mandic, Motor imagery signal classification using multivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 10–22 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Park, D. Looney, P. Kidmose, M. Ungstrup, D.P. Mandic, Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 366–373 (2011)CrossRefGoogle Scholar
  17. 17.
    N. Rehman, S. Ehsan, S.M.U. Abdullah, M.J. Akhtar, D.P. Mandic, K.D. McDonald-Maier, Multi-scale pixel-based image fusion using multivariate empirical mode decomposition. Sensors 15(5), 10923–10947 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition. Proc. R. Soc. A 466(2117), 1291–1302 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    N. Rehman, D. Looney, T. M. Rutkowski, D. P. Mandic, Bivariate EMD-based Image Fusion, in Proceedings of the IEEE Workshop on Statistical Signal Processing, Cardiff (2009)Google Scholar
  20. 20.
    P. Richardson, D. Walsh, L. Armi, M. Schroder, J.F. Price, Tracking three Meddies with SOFAR floats. J. Phys. Oceanogr. 19, 371–383 (1989)CrossRefGoogle Scholar
  21. 21.
    G. Rilling, P. Flandrin, P. Goncalves, J.M. Lilly, Bivariate empirical mode decomposition. IEEE Signal Process. Lett. 14, 936–939 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Tanaka, D.P. Mandic, Complex empirical mode decomposition. IEEE Signal Process. Lett. 14(2), 101–104 (2006)CrossRefGoogle Scholar
  23. 23.
    C.L. Vincent, G. Giebel, P. Pinson, H. Madsen, Resolving nonstationary spectral information in windeed time series using the Hilbert–Huang transform. J. Appl. Meteorol. Climatol. 49, 253–267 (2010)CrossRefGoogle Scholar
  24. 24.
    L. Wang, M.I. Vai, P.U. Mak, C.I. Ieon, Hardware-accelerated implementation of EMD. Proceedings of the 3rd International Conference in Biomedical Engineering Information 2, 912–915 (2010)Google Scholar
  25. 25.
    P. Waskito, S. Miwa, Y. Mitsukura, H. Nakajo, Parallelizing Hilbert-Huang Transform on a GPU, in First international conference on networking and computing (ICNC) (2010), pp. 184–190, Higashi-HiroshimaGoogle Scholar
  26. 26.
    X. Zhao, T.H. Patel, M.J. Zuo, Multivariate EMD and full spectrum based condition monitoring for rotating machinery. Mech. Syst. Signal Process. 27, 712–728 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qasim Waheed Malik
    • 1
  • Naveed ur Rehman
    • 1
    Email author
  • Sikender Gull
    • 1
  • Shoaib Ehsan
    • 2
  • Klaus D. McDonald-Maier
    • 2
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations