Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3136–3153 | Cite as

Exploiting Temporal Correlation for Detection of Non-stationary Signals Using a De-chirping Method Based on Time–Frequency Analysis

  • Nabeel Ali Khan
  • Sadiq Ali
Article
  • 205 Downloads

Abstract

Novel time–frequency (tf) methods are developed for the detection of non-stationary signals in the presence of noise with uncertain power. The proposed method uses instantaneous frequency estimation and de-chirping procedure to convert a non-stationary signal into a stationary signal, thus allowing us to exploit temporal correlation as an extra feature for signal detection in addition to the signal energy. The proposed method can be used for both mono-sensor and multi-sensor recordings. Area under receiver operating characteristic curve and probability of signal detection are used as criteria for comparing the performance of the proposed signal detection methods with the state of the art in the presence of noise power uncertainty. Simulation results indicate the superiority of the proposed approach.

Keywords

Non-stationary signal detection De-chirping Instantaneous frequency Temporal correlation 

References

  1. 1.
    S. Ali, J.A. Lopez-Salcedo, G. Seco-Granados, Improved GLRT based on the exploitation of spatial correlation between neighbouring sensors, in Proceedings of 19th EUSIPCO, pp. 1045–1049 (2011)Google Scholar
  2. 2.
    S. Ali, G. Seco-Granados, J.A. Lopez-Salcedo, Spectrum sensing with spatial signatures in the presence of noise uncertainty and shadowing. EURASIP J. Wirel. Commun. Netw. 2013, 150 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Ali, D. Ramírez, M. Jansson, G. Seco-Granados, J.A. López-Salcedo, Multi-antenna spectrum sensing by exploiting spatio-temporal correlation. EURASIP J. Adv. Signal Process. 2014(1), 1–16 (2014)CrossRefGoogle Scholar
  4. 4.
    T.W. Anderson, An Introduction to Multivariate Statistical Analysis, vol. 2, 2nd edn. (Wiley, New York, 2003)zbMATHGoogle Scholar
  5. 5.
    W.G. Anderson, R. Balasubramanian, Time-frequency detection of gravitational waves. Phys. Rev. D 60(10), 102001 (1999)CrossRefGoogle Scholar
  6. 6.
    E. Axell, G. Leus, E.G. Larsson, H.V. Poor, Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Barkat, B. Boashash, A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Trans. Signal Process. 49(10), 2232–2239 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)CrossRefGoogle Scholar
  9. 9.
    B. Boashash, G. Azemi, A review of time–frequency matched filter design with application to seizure detection in multichannel newborn EEG. Digit. Signal Process. 28, 28–38 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Boashash, V. Sucic, Resolution measure criteria for the objective assessment of the performance of quadratic time–frequency distributions. IEEE Trans. Signal Process. 51(5), 1253–1263 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Chen, X. Dong, Z. Peng, W. Zhang, G. Meng, Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. Djurović, A WD-RANSAC instantaneous frequency estimator. IEEE Signal Process. Lett. 23(5), 757–761 (2016)CrossRefGoogle Scholar
  13. 13.
    I. Djurovic, QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Signal Process. 130(Supplement C), 142–151 (2017)CrossRefGoogle Scholar
  14. 14.
    S.S. Haykin, J. Litva, T.J. Shepher, Radar Array Processing (Springer, New York, 1993)CrossRefGoogle Scholar
  15. 15.
    N.A. Khan, M. Sandsten, Time–frequency image enhancement based on interference suppression in Wigner–Ville distribution. Signal Process. 127, 80–85 (2016)CrossRefGoogle Scholar
  16. 16.
    O. Ledoit, M. Wolf, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat. 30(4), 1081–1102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    N. Lu, D.L. Zimmerman, The likelihood ratio test for a separable covariance matrix. Stat. Probab. Lett. 73(5), 449–457 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Meignen, D.-H. Pham, S. McLaughlin, On demodulation, ridge detection, and synchrosqueezing for multicomponent signals. IEEE Trans. Signal Process. 65(8), 2093–2103 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. Signal Image Video Process. 10(7), 1369–1376 (2016)CrossRefGoogle Scholar
  20. 20.
    J.M. O’Toole, B. Boashash, Time-frequency detection of slowly varying periodic signals with harmonics: methods and performance evaluation. EURASIP J. Adv. Signal Process. 2011(1), 193797 (2011)CrossRefGoogle Scholar
  21. 21.
    S.J. Shellhammer, S. Shankar, R. Tandra, J. Tomcik, Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs, in Proceedings of 1st International Workshop on Technology and policy for accessing spectrum (TAPAS), pp. 4–13 (2006)Google Scholar
  22. 22.
    P.-L. Shui, Z. Bao, S. Hong-Tao, Nonparametric detection of FM signals using time–frequency ridge energy. IEEE Trans. Signal Process. 56(5), 1749–1760 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Simmons, Echolocation in bats: signal processing of echoes for target range. Science 171(974), 925–928 (1971)CrossRefGoogle Scholar
  24. 24.
    L.J. Stankovic, I. Djurovic, A. Ohsumi, H. Ijima, Instantaneous frequency estimation by using Wigner distribution and Viterbi algorithm, in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03), Vol. 6. IEEE, pp. VI–121 (2003)Google Scholar
  25. 25.
    R. Tandra, A. Sahai, SNR walls for signal detection. IEEE J. Sel. Top. Signal Process. 2(1), 17–24 (2008)CrossRefGoogle Scholar
  26. 26.
    E. Visotsky, S. Kuffner, R. Peterson, On collaborative detection of TV transmissions in support of dynamic spectrum sharing, in Proceedings of 1st IEEE DySPAN, pp. 338–345 (2005)Google Scholar
  27. 27.
    S. Wang, X. Chen, G. Cai, B. Chen, X. Li, Z. He, Matching demodulation transform and synchrosqueezing in time–frequency analysis. IEEE Trans. Signal Process. 62(1), 69–84 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    W. Yang, G. Durisiand, V.I. Morgenshtern, E. Riegler, Capacity pre-log of SIMO correlated block-fading channels, in 8th International Symposium Wireless Communication Systems (ISWCS), pp. 869–873 (2011)Google Scholar
  29. 29.
    Y. Yang, X. Dong, Z. Peng, W. Zhang, G. Meng, Component extraction for non-stationary multi-component signal using parameterized de-chirping and band-pass filter. IEEE Signal Process. Lett. 22(9), 1373–1377 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Zeng, Y.C. Liang, Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)CrossRefGoogle Scholar
  31. 31.
    Y. Zeng, Y.-C. Liang, Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Trans. Veh. Technol. 58(4), 1804–1815 (2009)CrossRefGoogle Scholar
  32. 32.
    Y. Zeng, Y.-C. Liang, A.T. Hoang, R. Zhang, A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process. 2010, 381465 (2010).  https://doi.org/10.1155/2010/381465 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical EngineeringFoundation UniversityIslamabadPakistan
  2. 2.Department of Electrical EngineeringUniversity of Engineering and TechnologyPeshawarPakistan

Personalised recommendations