Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 85–104 | Cite as

Joint Estimation of Time Delay, Doppler Velocity and Doppler Rate of Unknown Wideband Signals

  • Xuebing XiaoEmail author
  • Fucheng Guo


In this work, we consider the joint estimation of time delay, Doppler velocity and Doppler rate of unknown wideband signals, in the sense that the time delay migration over time and Doppler shift migration over signal frequency are non-ignorable. By partitioning the received signals into short-time segments, a novel wideband signal model is presented and the maximum likelihood (ML) estimator is derived. With better compensation of parameter migrations, higher estimation accuracy might be achieved through the derived ML estimator. The signal-specific Cramer–Rao lower bound analysis for the wideband cases is also presented. To avoid the multidimensional search of the ML estimator, a fast estimation algorithm based on the time-reverse transform and the second-order Keystone transform is proposed. In this fast estimation algorithm, these parameters could be estimated through successive one-dimensional searches. Simulation results show that the fast estimation algorithm could achieve comparable performance with the ML estimator with a much lower computational complexity.


Doppler rate Keystone transform Time-reverse transform Wideband signal 


  1. 1.
    K. Borowiec, M. Malanowski, Accelerating rocket detection using passive bistatic radar, in 17th International Radar International, (2016), pp. 1–5.
  2. 2.
    Y.T. Chan, K.C. Ho, Joint time-scale and TDOA estimation: analysis and fast approximation. IEEE Trans. Signal Process. 53(8), 2625–2634 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    X. Chen, J. Guan, N. Liu, Y. He, Maneuvering target detection via Radon-fractional fourier transform-based long-time coherent integration. IEEE Trans. Signal Process. 62(4), 939–953 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Z. Deng, M. Fu, X. Wu, Y. Zhang, Doppler rate estimation on coherent sinusoidal pulse train and its Cramer–Rao lower bound. Signal Process. 101, 229–241 (2014)Google Scholar
  5. 5.
    I. Djurovic, M. Simeunovic, P. Wang, Cubic phase function: a simple solution to polynomial phase signal analysis. Signal Process. 135, 48–66 (2017)Google Scholar
  6. 6.
    M.L. Fowler, X. Hu, Signal models for TDOA/FDOA estimation. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1543–1550 (2008)Google Scholar
  7. 7.
    H. Hmam, Optimal sensor velocity configuration for TDOA–FDOA geolocation. IEEE Trans. Signal Process. 65(3), 628–637 (2017)MathSciNetGoogle Scholar
  8. 8.
    K.C. Ho, L. Xiaoning, L. Kovavisaruch, Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process. 55(2), 684–696 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. Horn, Maxtrix Analysis (Cambridge University Press, Cambridge, 1985)Google Scholar
  10. 10.
    D. Hu, Z. Huang, X. Chen, J. Lu, A moving source localization method using TDOA, FDOA and Doppler rate measurements. IEICE Trans. Commun. 99(3), 758–766 (2016)Google Scholar
  11. 11.
    P. Huang, G. Liao, Z. Yang, X.G. Xia, J. Ma, X. Zhang, An approach for refocusing of ground moving target without target motion parameter estimation. IEEE Trans. Geosci. Remote Sens. 55(1), 336–350 (2017)Google Scholar
  12. 12.
    P. Huang, G. Liao, Z. Yang, X.G. Xia, J. Ma, J. Zheng, Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized hough-haf transform. IEEE Trans. Geosci. Remote Sens. 55(1), 320–335 (2017)Google Scholar
  13. 13.
    P. Huang, G. Liao, Z. Yang, X.G. Xia, J.T. Ma, J. Ma, Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform. IEEE Trans. Signal Process. 64(15), 4013–4026 (2016)Google Scholar
  14. 14.
    S. Kay, Fundamentals of Statistical Signal Processing-Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993)zbMATHGoogle Scholar
  15. 15.
    Y.H. Kim, D.G. Kim, J.W. Han, K.H. Song, H.N. Kim, Analysis of sensor-emitter geometry for emitter localisation using TDOA and FDOA measurements. IET Radar Sonar Navig. 11(2), 341–349 (2017)Google Scholar
  16. 16.
    H. Li, D. Ma, R. Wu, A low complexity algorithm for across range unit effect correction of the moving target via range frequency polynomial-phase transform. Digit. Signal Process. 62(Supplement C), 176–186 (2017)Google Scholar
  17. 17.
    X. Li, G. Cui, W. Yi, L. Kong, Coherent integration for maneuvering target detection based on Radon-Lv’s distribution. IEEE Signal Process Lett. 22(9), 1467–1471 (2015)Google Scholar
  18. 18.
    X. Li, G. Cui, W. Yi, L. Kong, Fast coherent integration for maneuvering target with high-order range migration via TRT-SKT-LVD. IEEE Trans. Aerosp. Electron. Syst. 52(6), 2803–2814 (2016)Google Scholar
  19. 19.
    X. Li, G. Cui, W. Yi, L. Kong, Manoeuvring target detection based on keystone transform and Lv’s distribution. IET Radar Sonar Navig. 10(7), 1234–1242 (2016)Google Scholar
  20. 20.
    X. Li, G. Cui, W. Yi, L. Kong, Sequence-reversing transform-based coherent integration for high-speed target detection. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1573–1580 (2017)Google Scholar
  21. 21.
    X. Li, L. Kong, G. Cui, W. Yi, A low complexity coherent integration method for maneuvering target detection. Digit. Signal Process. 49, 137–147 (2016)Google Scholar
  22. 22.
    X. Li, L. Kong, G. Cui, W. Yi, Detection and RM correction approach for manoeuvring target with complex motions. IET Signal Process. 11(4), 378–386 (2017)Google Scholar
  23. 23.
    X. Li, L. Kong, G. Cui, W. Yi, Y. Yang, ISAR imaging of maneuvering target with complex motions based on ACCF–LVD. Digit. Signal Process. 46(Supplement C), 191–200 (2015)MathSciNetGoogle Scholar
  24. 24.
    X. Lv, G. Bi, C. Wan, M. Xing, Lv’s distribution: principle, implementation, properties, and performance. IEEE Trans. Signal Process. 59(8), 3576–3591 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    M. Malanowski, K. Kulpa, J. Misiurewicz, Acceleration estimation for passive coherent location radar, in IEEE Radar Conference, (2008), pp. 1–5.
  26. 26.
    M. Malanowski, K. Kulpa, K.E. Olsen, Extending the integration time in dvb-t-based passive radar, in 2011 European Radar Conference, (2011), pp. 190–193Google Scholar
  27. 27.
    D.J. Nelson, D.C. Smith, Scale cross-ambiguity and target resolution. Digit. Signal Process. 19(2), 194–200 (2009)Google Scholar
  28. 28.
    X. Rao, H. Tao, J. Su, X. Jian, Z. Xiangyang, Detection of constant radial acceleration weak target via IAR-FRFT. IEEE Trans. Aerosp. Electron. Syst. 51(4), 3242–3253 (2015)Google Scholar
  29. 29.
    G.S. Song, T.N.T. Goodman, F. Shang, Joint estimation of time delay and doppler shift for band-limited signals. IEEE Trans. Signal Process. 58(9), 4583–4594 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    S. Stein, Algorithms for ambiguity function processing. IEEE Trans. Acoust. Speech Signal Process. 29(3), 588–599 (1981)Google Scholar
  31. 31.
    J. Su, H. Tao, J. Xie, X. Rao, X. Guo, Imaging and doppler parameter estimation for maneuvering target using axis mapping based coherently integrated cubic phase function. Digit. Signal Process. 62, 112–124 (2017)Google Scholar
  32. 32.
    G. Sun, M. Xing, X.G. Xia, Y. Wu, Z. Bao, Robust ground moving-target imaging using deramp-keystone processing. IEEE Trans. Geosci. Remote Sens. 51(2), 966–982 (2013)Google Scholar
  33. 33.
    Z. Sun, X. Li, W. Yi, G. Cui, L. Kong, Detection of weak maneuvering target based on keystone transform and matched filtering process. Signal Process. 140(Supplement C), 127–138 (2017)Google Scholar
  34. 34.
    K. Tan, W. Li, Imaging and parameter estimating for fast moving targets in airborne SAR. IEEE Trans. Comput. Imaging 3(1), 126–140 (2017)Google Scholar
  35. 35.
    S. Tao, T. Ran, S.R. Rong, A fast method for time delay, doppler shift and doppler rate estimation, in International Conference Radar, (2006), pp. 1–4.
  36. 36.
    H.L.V. Trees, Detection, Estimation, and Modulation Theory, Pert III: Radar-Sonar Signal Processing and Gaussian Signals in Noise (Wiley, Hoboken, 2001)Google Scholar
  37. 37.
    Y. Wang, K.C. Ho, Tdoa positioning irrespective of source range. IEEE Trans. Signal Process. 65(6), 1447–1460 (2017)MathSciNetGoogle Scholar
  38. 38.
    Y. Wang, Y. Wu, An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Commun. Lett. 21(1), 80–83 (2017)MathSciNetGoogle Scholar
  39. 39.
    A.J. Weiss, Direct geolocation of wideband emitters based on delay and Doppler. IEEE Trans. Signal Process. 59(6), 2513–2521 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    L.G. Weiss, Wavelets and wideband correlation processing. IEEE Signal Process. Mag. 11(1), 13–32 (1994). Google Scholar
  41. 41.
    Y. Wu, G. Sun, X.G. Xia, M. Xing, Z. Bao, An improved SAC algorithm based on the range-keystone transform for Doppler rate estimation. IEEE Geosci. Remote Sens. Lett. 10(4), 741–745 (2013)Google Scholar
  42. 42.
    Z. Xin, G. Liao, Z. Yang, P. Huang, J. Ma, A fast ground moving target focusing method based on first-order discrete polynomial-phase transform. Digit. Signal Process. 60(Supplement C), 287–295 (2017)Google Scholar
  43. 43.
    J. Xu, X.G. Xia, S.B. Peng, J. Yu, Y.N. Peng, L.C. Qian, Radar maneuvering target motion estimation based on generalized Radon-Fourier transform. IEEE Trans. Signal Process. 60(12), 6190–6201 (2012)MathSciNetzbMATHGoogle Scholar
  44. 44.
    A. Yeredor, E. Angel, Joint TDOA and FDOA estimation: a conditional bound and its use for optimally weighted localization. IEEE Trans. Signal Process. 59(4), 1612–1623 (2011)Google Scholar
  45. 45.
    W. Yu, W. Su, H. Gu, Ground moving target motion parameter estimation using Radon modified Lv’s distribution. Digit. Signal Process. 69(Supplement C), 212–223 (2017)Google Scholar
  46. 46.
    J. Zhang, T. Su, J. Zheng, X. He, Novel fast coherent detection algorithm for radar maneuvering target with jerk motion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(5), 1792–1803 (2017)Google Scholar
  47. 47.
    L. Zhang, B. Yang, M. Luo, Joint delay and Doppler shift estimation for multiple targets using exponential ambiguity function. IEEE Trans. Signal Process. 65(8), 2151–2163 (2017)MathSciNetGoogle Scholar
  48. 48.
    W.Q. Zhang, Fast Doppler rate estimation based on fourth-order moment spectrum. Electron. Lett. 51(23), 1926–1928 (2015)Google Scholar
  49. 49.
    X. Zhang, H. Li, J. Liu, B. Himed, Joint delay and Doppler estimation for passive sensing with direct-path interference. IEEE Trans. Signal Process. 64(3), 630–640 (2016)MathSciNetGoogle Scholar
  50. 50.
    J. Zheng, T. Su, H. Liu, G. Liao, Z. Liu, Q.H. Liu, Radar high-speed target detection based on the frequency-domain deramp-keystone transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 285–294 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations