Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3154–3174 | Cite as

Locally Optimized Adaptive Directional Time–Frequency Distributions

  • Mokhtar Mohammadi
  • Ali Akbar Pouyan
  • Nabeel Ali Khan
  • Vahid Abolghasemi
Article

Abstract

This paper addresses the problem of estimating the parameters of adaptive directional time–frequency distributions (ADTFDs). ADTFDs locally optimize the direction of the smoothing kernel on the basis of directional Gaussian or double derivative directional Gaussian filter. Conventionally, the parameters of these techniques have to be tuned manually for each particular signal. Global optimization of the parameters fails to provide the desired results when the signal encompasses close or short-duration components. We propose a two-stage algorithm to resolve this issue. As part of the first stage, the length of the smoothing kernel is optimized globally. In the second stage, the parameters which control the shape of the selected smoothing window are optimized, locally. It is shown that the multistage algorithm can result in a time–frequency distribution that has both high resolution for close components and good concentration of signal energy for short-duration signal components. Experimental findings reveal the superiority of the proposed technique over the existing methods in the case of complete signals and its benefits in the case of signals with missing samples.

Keywords

Quadratic time–frequency distributions Adaptive directional kernels Complete signals Sparse signal Parameter optimization 

References

  1. 1.
    S. Ali, N.A. Khan, M. Haneef, X. Luo, Blind source separation schemes for mono-sensor and multi-sensor systems with application to signal detection. Circuits Syst. Signal Process. 36(11), 4615–4636 (2017).  https://doi.org/10.1007/s00034-017-0533-6 MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.G. Amin, B. Jokanovic, Y.D. Zhang, F. Ahmad, A sparsity-perspective to quadratic time–frequency distributions. Digit. Signal Process. 46, 175–190 (2015).  https://doi.org/10.1016/j.dsp.2015.06.011 MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Auger, P. Flandrin, Improving the readability of time–frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995).  https://doi.org/10.1109/78.382394 CrossRefGoogle Scholar
  4. 4.
    M.A. Awal, B. Boashash, An automatic fast optimization of quadratic time-frequency distribution using the hybrid genetic algorithm. Signal Process. 131, 134–142 (2017).  https://doi.org/10.1016/j.sigpro.2016.08.017 CrossRefGoogle Scholar
  5. 5.
    M.A. Awal, S. Ouelha, S. Dong, B. Boashash, A robust high-resolution time–frequency representation based on the local optimization of the short-time fractional Fourier transform. Digit. Signal Process. 70(Supplement C), 125–144 (2017).  https://doi.org/10.1016/j.dsp.2017.07.022 CrossRefGoogle Scholar
  6. 6.
    R.G. Baraniuk, D.L. Jones, Signal-dependent time–frequency analysis using a radially Gaussian kernel. Signal Process. 32(3), 263–284 (1993).  https://doi.org/10.1016/0165-1684(93)90001-Q CrossRefzbMATHGoogle Scholar
  7. 7.
    R.G. Baraniuk, P. Flandrin, A.J.E.M. Janssen, O.J.J. Michel, Measuring time–frequency information content using the Renyi entropies. IEEE Trans. Inf. Theory 47(4), 1391–1409 (2001).  https://doi.org/10.1109/18.923723 CrossRefzbMATHGoogle Scholar
  8. 8.
    M. Bastiaans, T. Alieva, L. Stanković, On rotated time–frequency kernels. IEEE Signal Process. Lett. 9(11), 378–381 (2002).  https://doi.org/10.1109/LSP.2002.805118 CrossRefGoogle Scholar
  9. 9.
    B. Boashash, T. Ben-Jabeur, Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 354–359 (2012).  https://doi.org/10.1109/ISSPA.2012.6310574
  10. 10.
    B. Boashash, S. Ouelha, Designing high-resolution time–frequency and time-scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance. Digit. Signal Process. (2017).  https://doi.org/10.1016/j.dsp.2017.07.015
  11. 11.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 80(4), 520–538 (1992).  https://doi.org/10.1109/5.135376 CrossRefGoogle Scholar
  12. 12.
    B. Boashash, Time–Frequency Signal Analysis and Processing, 2nd edn. (Academic Press, Oxford, 2015).  https://doi.org/10.1016/B978-0-12-398499-9.00003-0 Google Scholar
  13. 13.
    B. Boashash, S. Ouelha, An improved design of high-resolution quadratic time–frequency distributions for the analysis of non-stationary multicomponent signals using directional compact kernels. IEEE Trans. Signal Process. PP(99), 1–1 (2017).  https://doi.org/10.1109/TSP.2017.2669899 Google Scholar
  14. 14.
    B. Boashash, N.A. Khan, T. Ben-Jabeur, Time–frequency features for pattern recognition using high-resolution TFDS. Digit. Signal Process. 40(C), 1–30 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Brajovi, V. Popovi-Bugarin, I. Djurovi, S. Djukanovi, Post-processing of time–frequency representations in instantaneous frequency estimation based on ant colony optimization. Signal Process. 138(Supplement C), 195–210 (2017).  https://doi.org/10.1016/j.sigpro.2017.03.022 CrossRefGoogle Scholar
  16. 16.
    G. Chen, J. Chen, G. Dong, H. Jiang, An adaptive non-parametric short-time Fourier transform: application to echolocation. Appl. Acoust. 87, 131–141 (2015).  https://doi.org/10.1016/j.apacoust.2014.06.018 CrossRefGoogle Scholar
  17. 17.
    P. Flandrin, P. Borgnat, Time–frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010).  https://doi.org/10.1109/TSP.2010.2044839 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    F. Hlawatsch, T.G. Manickam, R.L. Urbanke, W. Jones, Smoothed pseudo-Wigner distribution, Choi–Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison. Signal Process. 43(2), 149–168 (1995).  https://doi.org/10.1016/0165-1684(94)00150-X CrossRefzbMATHGoogle Scholar
  19. 19.
    T.K. Hon, A. Georgakis, Enhancing the resolution of the spectrogram based on a simple adaptation procedure. IEEE Trans. Signal Process. 60(10), 5566–5571 (2012).  https://doi.org/10.1109/TSP.2012.2208637 MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Jones, R. Baraniuk, An adaptive optimal-kernel time–frequency representation. IEEE Trans. Signal Process. 43(10), 2361–2371 (1995)CrossRefGoogle Scholar
  21. 21.
    D.L. Jones, T.W. Parks, A high resolution data-adaptive time–frequency representation. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2127–2135 (1990).  https://doi.org/10.1109/29.61539 CrossRefGoogle Scholar
  22. 22.
    N.A. Khan, S. Ali, Sparsity-aware adaptive directional time–frequency distribution for source localization. Circuits Syst. Signal Process. (2017).  https://doi.org/10.1007/s00034-017-0603-9
  23. 23.
    N.A. Khan, B. Boashash, Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int. J. Adapt. Control Signal Process. (2015).  https://doi.org/10.1002/acs.2583
  24. 24.
    N. Khan, B. Boashash, Instantaneous frequency estimation of multicomponent nonstationary signals using multiview time–frequency distributions based on the adaptive fractional spectrogram. IEEE Signal Process. Lett. 20(2), 157–160 (2013)CrossRefGoogle Scholar
  25. 25.
    N.A. Khan, M. Sandsten, Time–frequency image enhancement based on interference suppression in Wignerville distribution. Signal Process. 127, 80–85 (2016).  https://doi.org/10.1016/j.sigpro.2016.02.027 CrossRefGoogle Scholar
  26. 26.
    N. Khan, F. Baig, J.N. Syed, N. Ur Rehman, S. Sharma, Analysis of power quality signals using an adaptive time–frequency distribution. Energies 9, 933 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Lerga, N. Saulig, V. Mozeti, Algorithm based on the short-term Renyi entropy and IF estimation for noisy EEG signals analysis. Comput. Biol. Med. 80(Supplement C), 1–13 (2017)CrossRefGoogle Scholar
  28. 28.
    Z. Liang, X. Duan, X. Li, Entropy Measures in Neural Signals (Springer, Singapore, 2016), pp. 125–166Google Scholar
  29. 29.
    D. Malnar, V. Sucic, J. O’Toole, Automatic quality assessment and optimisation of quadratic time–frequency representations. Electron. Lett. 51(13), 1029–1031 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Mateo, J.A. Talavera, Short-time Fourier transform with the window size fixed in the frequency domain. Digit. Signal Process. (2017).  https://doi.org/10.1016/j.dsp.2017.11.003 Google Scholar
  31. 31.
    W. Mecklenbrauker, F. Hlawatsch, The Wigner distribution: theory and applications in signal processing (Elsevier, Amesterdam, 1997)zbMATHGoogle Scholar
  32. 32.
    M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. SIViP 10(7), 1369–1376 (2016).  https://doi.org/10.1007/s11760-016-0901-x CrossRefGoogle Scholar
  33. 33.
    M. Mohammadi, N. AliKhan, A.A. Pouyan, Automatic seizure detection using a highly adaptive directional time–frequency distribution. Multidimens. Syst. Signal Process. (2017).  https://doi.org/10.1007/s11045-017-0522-8 Google Scholar
  34. 34.
    S. Ouelha, S. Touati, B. Boashash, An efficient inverse short-time Fourier transform algorithm for improved signal reconstruction by time–frequency synthesis: optimality and computational issues. Digit. Signal Process. 65(Supplement C), 81–93 (2017).  https://doi.org/10.1016/j.dsp.2017.03.002 MathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Rankine, M. Mesbah, B. Boashash, IF estimation for multicomponent signals using image processing techniques in the time–frequency domain. Sig. Process. 87(6), 1234–1250 (2007).  https://doi.org/10.1016/j.sigpro.2006.10.013 CrossRefzbMATHGoogle Scholar
  36. 36.
    T.H. Sang, W.J. Williams, Renyi information and signal-dependent optimal kernel design. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 997–1000 (1995).  https://doi.org/10.1109/ICASSP.1995.480344
  37. 37.
    N. Saulig, I. Orovi, V. Sucic, Optimization of quadratic time–frequency distributions using the local Renyi entropy information. Sig. Process. 129, 17–24 (2016).  https://doi.org/10.1016/j.sigpro.2016.05.025 CrossRefGoogle Scholar
  38. 38.
    E. Sejdi, I. Djurovi, J. Jiang, Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009).  https://doi.org/10.1016/j.dsp.2007.12.004 CrossRefGoogle Scholar
  39. 39.
    E. Sejdi, I. Orovi, S. Stankovi, Compressive sensing meets time–frequency: an overview of recent advances in time–frequency processing of sparse signals. Digit. Signal Process. (2017).  https://doi.org/10.1016/j.dsp.2017.07.016 Google Scholar
  40. 40.
    A. Serbes, L. Durak, Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Commun. Nonlinear Sci. Numer. Simul. 15(3), 675–689 (2010).  https://doi.org/10.1016/j.cnsns.2009.05.013 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L. Stanković, A method for time–frequency analysis. IEEE Trans. Signal Process. 42(1), 225–229 (1994).  https://doi.org/10.1109/78.258146 CrossRefGoogle Scholar
  42. 42.
    L. Stanković, A measure of some time–frequency distributions concentration. Signal Process. 81(3), 621–631 (2001). (special section on digital signal processing for multimedia)CrossRefzbMATHGoogle Scholar
  43. 43.
    I. Volaric, V. Sucic, S. Stankovic, A data driven compressive sensing approach for time–frequency signal enhancement. Signal Process. 141(1), 229–239 (2017).  https://doi.org/10.1016/j.sigpro.2017.06.013 CrossRefGoogle Scholar
  44. 44.
    W.J. Williams, T. Sang, Adaptive RID kernels which minimize time–frequency uncertainty. In: Proceedings of IEEE-SP International Symposium on Time–Frequency and Time-Scale Analysis, pp. 96–99 (1994).  https://doi.org/10.1109/TFSA.1994.467355
  45. 45.
    J. Zhong, Y. Huang, Time–frequency representation based on an adaptive short-time Fourier transform. IEEE Trans. Signal Process. 58(10), 5118–5128 (2010).  https://doi.org/10.1109/TSP.2010.2053028 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    M. Zhu, X. Zhang, Y. Qi, An adaptive STFT using energy concentration optimization. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–4 (2015).  https://doi.org/10.1109/ICICS.2015.7459918

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mokhtar Mohammadi
    • 1
    • 2
  • Ali Akbar Pouyan
    • 1
  • Nabeel Ali Khan
    • 3
  • Vahid Abolghasemi
    • 1
  1. 1.Laboratory of Advanced Industrial Signal Processing and AIShahrood University of TechnologyShahroodIran
  2. 2.Department of Computer ScienceUniversity of Human DevelopmentSlemaniIraq
  3. 3.Electrical EngineeringFoundation UniversityIslamabadPakistan

Personalised recommendations