Circuits, Systems, and Signal Processing

, Volume 37, Issue 9, pp 3995–4014 | Cite as

Design of High-Performance ECG Detector for Implantable Cardiac Pacemaker Systems using Biorthogonal Wavelet Transform

  • Ashish Kumar
  • Deepak Berwal
  • Yogendera Kumar


A digital electrocardiogram (ECG) detector with low power consumption and high performance based on biorthogonal 2.2 wavelet transform and applicable for the modern implantable cardiac pacemakers is proposed in the present work. Biorthogonal 2.2 wavelet transform is chosen due to its high SNR, less number of coefficients, resemblance of shape with ECG wave and ability to increase QRS complex detection performance. Architecture of the proposed ECG detector includes modified biorthogonal 2.2 wavelet filter bank and a modified soft threshold-based QRS complex detector. Three low-pass filters and one high-pass filter with pipelined architecture are used which are lesser than the earlier designed detectors. Various blocks of proposed detector are designed to denoise the input ECG signal and then to find the correct location of R-wave. Verilog hardware description language for design entry, Modelsim embedded in Xilinx ISE v.14.1 for simulation, Virtex-6 FPGAs for synthesis and Xilinx ISE tools are used to measure the performance, area and power of the proposed ECG detector and its constituent blocks. A low detection error rate of 0.13%, positive predictivity (\(\hbox {P}^{+}\)) of 99.94% and sensitivity (\(\hbox {S}_{\mathrm{e}}\)) of 99.92% are achieved for the proposed ECG detector which are better compared to the previous results. Also, it consumes only 20 mW of total power at 50 KHz and shows the overall delay of 18.924 ns which makes it useful for the low power and high-performance applications.


Implantable cardiac pacemaker (ICP) Wavelet-based ECG detector biorthogonal 2.2 wavelet MATLAB Verilog HDL Xilinx 


  1. 1.
    V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46, 192–202 (1999)CrossRefGoogle Scholar
  2. 2.
    Bhavtosh, D. Berwal, Y. Kumar, High performance QRS complex detector for wearable ECG system using multi scaled product with booth multiplier and soft threshold algorithm, IEEE ICSC-15, 204–209 (2015)Google Scholar
  3. 3.
    G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, H.T. Nagle, A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomedical Engineering 37(1), 85–98 (1990)CrossRefGoogle Scholar
  4. 4.
    R.X. Gao, R. Yan, Wavelets: Theory and Applications for Manufacturing. Springer Science and Business Media publication, ISBN 978 1 4419 1544 3, (2010)Google Scholar
  5. 5.
    F. Gritzali, G. Frangakis, G. Papakonstantinou, Detection of the P and T waves in an ECG. Comput. Biomed. Res. 22, 83–91 (1989)CrossRefGoogle Scholar
  6. 6.
    P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT-BIH arrhythmai database. IEEE Trans. Biomed. Eng. 12, 1157–1187 (1986)CrossRefGoogle Scholar
  7. 7.
    Y.H. Hu, W.J. Tompkins, J.L. Urrusti, V.X. Afonso, Applications of artificial neural networks for ECG signal detection and classification. J. Electrocardiol. 26(Suppl.), 66–73 (1993)Google Scholar
  8. 8.
    S. Kadambe, R. Murray, G.F.B. Bartels, Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46, 838–848 (1999)CrossRefGoogle Scholar
  9. 9.
    B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)CrossRefGoogle Scholar
  10. 10.
    B.U. Kohler, C. Hennig, R. Orglmeister, QRS detection using zero crossing counts. Prog. Biomed. Res. 8(3), 138–145 (2003)Google Scholar
  11. 11.
    C. Li, C. Zheng, C. Tai, Detection of ECG characteristic pointsusing wavelet transforms. IEEE Trans. Biomed. Eng. 42, 21–28 (1995)CrossRefGoogle Scholar
  12. 12.
    Y.J. Min, H.K. Kim, Y.R. Kang, G.S. Kim, J. Park, S.W. Kim, Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. Biomed. Circuits Syst. 7(4), 426–436 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Pan, L. Zhang, S. Zhou, Detection of ECG characteristic points using biorthogonl spline wavelet. IEEE Trans. Biomed. Eng. Inform. 2, 858–863 (2010)Google Scholar
  14. 14.
    E. Pietka, Feature extraction in computerized approach to the ECG analysis. Pattern Recog. 24, 139–146 (1991)CrossRefGoogle Scholar
  15. 15.
    R. Poli, S. Cagnoni, G. Valli, Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42, 1137–1141 (1995)CrossRefGoogle Scholar
  16. 16.
    J.N. Rodrigues, T. Olsson, L. Sornmo, V. Owall, Digital implementation of a wavelet-based event detector for cardiac pacemakers. IEEE Trans. Syst. I 52(12), 2686–2698 (2005). Reg. PapersGoogle Scholar
  17. 17.
    R.S. Sanders, M.T. Lee, Implantable pacemakers. Proc. IEEE 84(3), 480–486 (1996)CrossRefGoogle Scholar
  18. 18.
    M.G. Strintzis, G. Stalidis, X. Magnisalis, N. Maglaveras, Use of neural networks for electrocardiogram (ECG) feature extraction, recognition and classification. Neural Netw. World 3(4), 313–327 (1992)Google Scholar
  19. 19.
    Y. Sun, S. Suppappola, T.A. Wrublewski, Microcontroller-based real-time QRS detection. Biomed. Instrum. Technol. 26(6), 477–484 (1992)Google Scholar
  20. 20.
    Y. Sun, K.L. Chan, S.M. Krishan, Characteristic wave detection ECG signal using morphological transform BMC Cardiovasular. Disorders 5(1), 28 (2005)Google Scholar
  21. 21.
    P.E. Trahanias, An approach to QRS complex detection using mathematical morphology. IEEE Trans. Biomed. Eng. 40(2), 201–205 (1993)CrossRefGoogle Scholar
  22. 22.
    G. Vijaya, V. Kumar, H.K. Verma, ANN-based QRS-complex analysis of ECG. J. Med. Eng. Technol. 22(4), 160–167 (1998)CrossRefGoogle Scholar
  23. 23.
    H.W. Wang, Y.L. Lai, M.C. Hou, S.H. Lin, B.S. Yen, Y.C. Huang, L.C. Chou, S.Y. Hsu, S.C. Huang, M.Y. Jan, A \(\pm 6\) ms- accuracy, \(0.68\text{mm}^{2}\) and \(2.21\,{\upmu \text{ W }}\) QRS detection ASIC, in Proc. IEEE Circuits Syst. Symp., Paris, France, pp. 1372-1375 (2010)Google Scholar
  24. 24.
    L.L. Wang, T.Y. Chen, Q. Fang, S.Y. Lee, Implementation of a wireless ECG acquisition SOC for IEEE 802.15.4 (ZigBee) applications. IEEE J. Biomed. Health Infom. 19(1), 247–255 (2015)CrossRefGoogle Scholar
  25. 25.
    L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, H. Naas, A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39(12), 2446–2456 (2004)CrossRefGoogle Scholar
  26. 26.
    Q. Xue, Y.H. Hu, W.J. Tompkins, Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39, 317–329 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringBennett UniversityGreater NoidaIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  3. 3.Department of Electronics and Communication EngineeringGalgotias UniversityGreater NoidaIndia

Personalised recommendations