Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 9, pp 3946–3972 | Cite as

Image Edge Detection Using Fractional Calculus with Feature and Contrast Enhancement

  • Amita Nandal
  • Hamurabi Gamboa-Rosales
  • Arvind Dhaka
  • Jose M. Celaya-Padilla
  • Jorge Issac Galvan-Tejada
  • Carlos Eric Galvan-Tejada
  • Francisco Javier Martinez-Ruiz
  • Cesar Guzman-Valdivia
Article

Abstract

Edge detection is an important aspect of image processing to improve image edge quality. In the literature, there exist various edge detection techniques in spatial and frequency domains that use integer-order differentiation operators. In this paper, we have implemented feature and contrast enhancement of image using Riemann–Liouville fractional differential operator. Based on the direction of strong edge, we have evaluated edge components and carried out a performance analysis based on several well-known metrics. We have also improved the pixel contrast based on foreground and background gray level. Moreover, by theoretical and experimental results, it is observed that the proposed feature and contrast enhancement outperforms the existing methods under comparison. We have discussed that the edge components calculated using fractional derivative can be used for texture and contrast enhancement. This paper is based on fractional-order differentiation operation to detect edges with the help of the directional edge components across eight directions. The experimental comparison results are shown in tabular form and as qualitative texture results. The six experimental input images are used to analyze various performance metrics. The experiments show that for any grayscale image the proposed method outperforms classical edge detection operators.

Keywords

Corner detection Contrast enhancement Directional component Differential operators Edge component Edge detection Gaussian noise Integer-order derivative Shrinking factor 

References

  1. 1.
    K.G. Alhinai, M.A. Khan, A.A. Canas, Enhancement of sand dune texture from landsat imagery using difference of Gaussian filter. Int. J. Remote Sens. 12, 1063–1069 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Brunner, L. Ling, M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Q. Chen, Z. Song, J. Dong, Z. Huang, Y. Hua, S. Yan, Contextualizing object detection and classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 13–27 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Chen, S. Holm, Fractional Laplacian time–space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency. J. Acoust. Soc. Am. 115(4), 1424–1430 (2004)CrossRefGoogle Scholar
  5. 5.
    L.S. Davis, A survey of edge detection techniques. Comput. Graph. Image Process. 4(3), 248–260 (1975)CrossRefGoogle Scholar
  6. 6.
    K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics (Springer, Berlin, 2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    L. Ding, A. Goshtasby, On the canny edge detector. Pattern Recogn. 34(3), 721–725 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    A. Ghaffari, E. Fatemizadeh, RISM: single-modal image registration via rank-induced similarity measure. IEEE Trans. Image Process. 24(12), 5567–5580 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R.C. Gonzalez, R.E. Woods, Digital Image Processing (Prentice-Hall, Englewood Cliffs, 2008)Google Scholar
  10. 10.
    M. Hadwiger, J.M. Kniss, R.C. Salama, D. Weiskopf, K. Engel, Real-Time Volume Graphics (A. K. Peters Ltd., Natick, 2006)Google Scholar
  11. 11.
    F. He, S. Wang, Beyond \(\chi \)2 difference: learning optimal metric for boundary detection. IEEE Signal Process. Lett. 22(1), 40–44 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Jourlin, J.C. Pinoli, Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Sig. Process. 41(2), 225–237 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Z. W. Ju, J.Z. Chen, J.L. Zhou, Image segmentation based on edge detection using K-means and an improved ant colony optimization. International Conference on Machine Learning and Cybernetics (ICMLC), China, pp. 297–303 (2013)Google Scholar
  14. 14.
    S. Kumar, R. Saxena, K. Singh, Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits Syst. Signal Process. 36(4), 1493–1513 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Larsen, M.B. Stegmann, S. Darkner, S. Forchhammer, T.F. Cootes, B.K. Ersboll, Texture enhanced appearance models. Comput. Vis. Image Underst. 106(1), 20–30 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Lehtomäki, A. Jaakkola, J. Hyyppä, J. Lampinen, H. Kaartinen, A. Kukko, E. Puttonen, H. Hyyppä, Object classification and recognition from mobile laser scanning point clouds in a road environment. IEEE Trans. Geosci. Remote Sens. 54(2), 1226–1239 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Lopez-Molina, H. Bustince, B. De Baets, Separability criteria for the evaluation of boundary detection benchmarks. IEEE Trans. Image Process. 25(3), 1047–1055 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.K. Maji, H.M. Yahia, H. Badri, Reconstructing an image from its edge representation. Digit. Signal Proc. 23(6), 1867–1876 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Manabe, A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn. 29(1), 251–268 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M.D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering (Springer, Berlin, 2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    W.K. Pratt, Digital Image Processing, 3rd edn. (Wiley, New York, 2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    J.M.S. Prewitt, Object Enhancement and Extraction, Picture processing and Psychopictorics (Academic Press, Cambridge, 1970), pp. 75–149Google Scholar
  23. 23.
    Y. Pu, J. Zhou, X. Yuan, Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 19(2), 491–511 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    L.G. Roberts, Machine Perception of Three-Dimensional Solids. Thesis (Ph. D.) Massachusetts Institute of Technology, Department of Electrical Engineering (1963)Google Scholar
  25. 25.
    J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, New York, 2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 330–337 (2013)CrossRefGoogle Scholar
  27. 27.
    I. Sobel, G. Feldman, A 3 \(\times \) 3 Isotropic Gradient Operator for Image Processing. Stanford Artificial Intelligence Project (SAIL) (1968)Google Scholar
  28. 28.
    F. Taponecco, T. Urness, V. Interrante, Directional enhancement in texture-based vector field visualization. 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Malaysia, pp. 197–204 (2006)Google Scholar
  29. 29.
    C. Telke, M. Beitelschmidt, Edge detection based on fractional order differentiation and its application to railway track images. Proc. Appl. Math. Mech. 15, 671–672 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Wang, Y. Ye, X. Gao, Fractional 90-degree phase-shift filtering based on the double-sided Grunwald–Letnikov differintegrator. IET Signal Proc. 9(4), 328–334 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Wang, Y. Ye, Y. Gao, S. Qian, X. Gao, Fractional compound integral with application to ECG signal denoising. Circuits Syst. Signal Process. 34(6), 1915–1930 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. Wang, Y. Ye, X. Pan, X. Gao, C. Zhuang, Fractional zero-phase filtering based on the Riemann–Liouville integral. Sig. Process. 98(5), 150–157 (2014)CrossRefGoogle Scholar
  33. 33.
    D. Zosso, X. Bresson, J.P. Thiran, Geodesic active fields—a geometric framework for image registration. IEEE Trans. Image Process. 20(5), 1300–1312 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amita Nandal
    • 1
  • Hamurabi Gamboa-Rosales
    • 2
  • Arvind Dhaka
    • 3
  • Jose M. Celaya-Padilla
    • 4
  • Jorge Issac Galvan-Tejada
    • 2
  • Carlos Eric Galvan-Tejada
    • 2
  • Francisco Javier Martinez-Ruiz
    • 2
  • Cesar Guzman-Valdivia
    • 4
  1. 1.University of Information Science and TechnologyOhridMacedonia
  2. 2.Faculty of Electrical EngineeringAutonomous University of ZacatecasZacatecasMexico
  3. 3.National Institute of Technology, HamirpurHamirpurIndia
  4. 4.CONACYT FacultyAutonomous University of ZacatecasZacatecasMexico

Personalised recommendations