Circuits, Systems, and Signal Processing

, Volume 38, Issue 7, pp 3041–3057 | Cite as

Stability and Stabilization of 2D Singular Systems: A Strict LMI Approach

  • Marwa Elloumi
  • Mariem Ghamgui
  • Driss Mehdi
  • Fernando TadeoEmail author
  • Mohamed Chaabane


This paper deals with the stability and stabilization of 2D singular systems described by a Roesser model. The proposed results are presented in terms of a strict linear matrix inequality (LMI), which makes possible to elaborate a new sufficient admissibility condition. The design of a state feedback controller is then treated using this condition, deriving a sufficient condition for the admissibility of the closed-loop system. A numerical example is given at the end of the paper, which illustrates the effectiveness of the proposed methodology.


Two-dimensional (2D)systems Singular systems Stability Stabilization Strict LMI 



Marwa Elloumi was partially funded by an Erasmus+ KA107 Grant from EACEA, coordinated by the University of Valladolid, Spain. Prof. Tadeo is funded by Junta de Castilla y Leon and FEDER funds (CLU 2017-09 and UIC 233).


  1. 1.
    M.S. Boudellioua, K. Galkowski, Reduction of wave linear repetitive processes to 2-d singular state space form, in 23rd International Symposium on Mathematical Theory of Networks and Systems (Hong Kong University of Science and Technology, Hong Kong, 2018), pp. 677–682Google Scholar
  2. 2.
    M.S. Boudellioua, K. Galkowski, E. Rogers, On the connection between discrete linear repetitive processes and 2-d discrete linear systems. Multidimens. Syst. Signal Process. 28, 341–351 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. Cai, Y. Zou, A note on the internal stability for 2-D singular discrete systems. Multidimens. Syst. Signal Process. 15(2), 197–204 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Chaabane, O. Bachelier, M. Souissi, D. Mehdi, Stability and stabilization of continuous descriptor systems: an LMI approach. Math. Probl. Eng. 2006, Article ID 39367 (2006)Google Scholar
  5. 5.
    M. Chaabane, F. Tadeo, D. Mehdi, M. Souissi, Robust admissibilization of descriptor systems by static output-feedback: an LMI approach. Math. Probl. Eng. 2011, Article ID 960981 (2011)Google Scholar
  6. 6.
    S.F. Chen, Stability analysis and stabilization of 2D singular Roesser models. Appl. Math. Comput. 250, 779–791 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    G.R. Duan, Analysis and design of descriptor linear systems, vol. 23 (Springer, Berlin, 2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    K. Galkowski, A perspective on singularity in 2d linear systems. Multidimens. Syst. Signal Process. 11(1), 83–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    K. Galkowski, J. Lam, S. Xu, Z. Lin, LMI approach to state-feedback stabilization of multidimensional systems. Int. J. Control 76(14), 1428–1436 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Ghamgui, D. Mehdi, O. Bachelier, M. Chaabane, Stability of 2D discrete Takagi–Sugeno systems. CSSP 36(6), 2256–2274 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Ghamgui, N. Yeganefar, O. Bachelier, D. Mehdi, Stability and stabilization of 2D continuous state-delayed systems, in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) 2011 (IEEE, 2011), pp. 1878–1883Google Scholar
  12. 12.
    T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(3), 254–257 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Kaczorek (ed.), Two-Dimensional Linear Systems, vol. 68, Lecture Notes in Control and Information Science (Springer, New York, 1985)zbMATHGoogle Scholar
  14. 14.
    S. Kririm, A. Hmamed, F. Tadeo, Robust \( {H}_ {\infty }\) filtering for uncertain 2D singular Roesser models. Circuits Syst. Signal Process. 34(7), 2213–2235 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Liu, Lyapunov stability of two-dimensional digital filters with overflow nonlinearities. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45(5), 574–577 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. Liu, A.N. Michel, Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 127–137 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    W.S. Lu, Two-Dimensional Digital Filters, vol. 80 (CRC Press, Boca Raton, 1992)zbMATHGoogle Scholar
  18. 18.
    W. Paszke, J. Lam, K. Galkowski, S. Xu, Z. Lin, Robust stability and stabilization of 2D discrete state-delayed systems. Syst. Control Lett. 51, 277–291 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    O. Rejichi, O. Bachelier, M. Chaabane, D. Mehdi, Admissibility and state feedback admissibilization of discrete singular systems: an LMI approach, in 16th Mediterranean Conference on Control and Automation 2008 (IEEE, 2008), pp. 1022–1027Google Scholar
  20. 20.
    S.M. Saadni, M. Chaabane, D. Mehdi, O. Bachelier, Robust stability and stabilization of a class of singular systems with multiple time-varying delays. IFAC Proc. Vol. 38(1), 161–166 (2005)CrossRefGoogle Scholar
  21. 21.
    H.R. Shaker, F. Shaker, Lyapunov stability for continuous-time multidimensional nonlinear systems. Nonlinear Dyn. 75(4), 717–724 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    R.E. Skelton, T. Iwasaki, K.M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design (Taylor-Francis, Bristol, 1998)Google Scholar
  23. 23.
    M. Tiwari, A. Dhawan, A survey on the stability of 2D discrete systems described by Fornasini-Marchesini second model. Circuits Syst. 3(1), 17 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Wang, W. Wang, W. Chen, Delay-dependent stability for 2D singular systems with state-varying delay in Roesser model: an LMI approach, in Control Conference (CCC), 2014 33rd Chinese (IEEE, 2014), pp. 6074–6079Google Scholar
  25. 25.
    Z. Xiang, S. Huang, Stability analysis and stabilization of discrete-time 2D switched systems. Circuits Syst. Signal Process. 32(1), 401–414 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Xu, Y. Zou, \( {H}_{\infty } \) control for 2D singular delayed systems. Int. J. Syst. Sci. 42(4), 609–619 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    H. Xu, Y. Zou, S. Xu, J. Lam, Bounded real lemma and robust \( {H}_{\infty } \) control of 2D singular Roesser models. Syst. Control Lett. 54(4), 339–346 (2005)CrossRefzbMATHGoogle Scholar
  28. 28.
    S. Xu, J. Lam, \({H}_{\infty }\) model reduction for discrete-time singular systems. Syst. Control Lett. 48(2), 121–133 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Y. Zou, S.L. Campbell, The jump behavior and stability analysis for 2D singular systems. Multidimens. Syst. Signal Process. 11(4), 339–358 (2000)CrossRefGoogle Scholar
  30. 30.
    Y. Zou, H. Xu, Duality of 2-d singular systems of Roesser models. J. Control Theory Appl. 5, 37–41 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Y. Zou, H. Xu, W. Wang, Stability for two-dimensional singular discrete systems described by general model. Multidimens. Syst. Signal Process. 19(2), 219–229 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National School of Engineers of SfaxUniversity of SfaxSfaxTunisia
  2. 2.National School of Engineering of PoitiersUniversity of PoitiersPoitiersFrance
  3. 3.Institute of Sustainable ProcessesUniversity of ValladolidValladolidSpain
  4. 4.Industrial Engineering SchoolUniversity of ValladolidValladolidSpain

Personalised recommendations