Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3635–3650 | Cite as

Extraction of Phase Information from Magnitude-Only Bio-impedance Measurements Using a Modified Kramers–Kronig Transform

  • A. A. Al-Ali
  • A. S. Elwakil
  • B. J. Maundy
  • T. J. Freeborn


The need for portable and low-cost bio-impedance analyzers that can be deployed in field studies has significantly increased. Due to size and power constraints, reducing the hardware in these devices is crucial and most importantly is removing the need for direct phase measurement. In this paper a new magnitude-only technique based on modified Kramers–Kronig transforms is proposed and tested. Comparison with impedance measurements of fresh and aging tomato samples using a precise industry standard impedance analyzer is carried out and explained. Error and noise analysis of the proposed algorithm are also reported.


Kramers–Kronig transform Bio-impedance Phase measurement 



The authors wish to acknowledge the support of the Natural Sciences and Engineering Research Council (NSERC, Canada) in the development of this work.


  1. 1.
    A.A. Al-Ali, A.S. Elwakil, A. Ahmad, B.J. Maundy, Design of a portable low-cost impedance analyzer, in 10th Joint International Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) and Biomedical Electronics and Devices (BIODEVICES-2017), vol. 1 (2017), pp. 104–109Google Scholar
  2. 2.
    H.W. Bode, Relations between attenuation and phase in feedback amplifier design. Bell Labs Tech. J. 19(3), 421–454 (1940)CrossRefGoogle Scholar
  3. 3.
    H.W. Bode, et al., Network Analysis and Feedback Amplifier Design (D. Van Nostrand. Co., Inc., New York, 1945)Google Scholar
  4. 4.
    A. Bondarenko, G. Ragoisha, Inverse Problem in Potentiodynamic Electrochemical Impedance (Nova Science Publishers, New York, 2005).
  5. 5.
    L. Breniuc, V. David, C.-G. Haba, Wearable impedance analyzer based on AD5933, in 2014 International Conference and Exposition on Electrical and Power Engineering (EPE) (2014), pp. 585–590Google Scholar
  6. 6.
    K. Chabowski, T. Piasecki, A. Dzierka, K. Nitsch, Simple wide frequency range impedance meter based on AD5933 integrated circuit. Metrol. Meas. Syst. 22(1), 13–24 (2015)CrossRefGoogle Scholar
  7. 7.
    C.T.-S. Ching, W.-Y. Chih, Design and evaluation of an affordable and programmable mobile device, capable of delivering constant current and high voltage electric pulses of different waveforms for biomedical and clinical applications. Sens. Actuators B: Chem. 194, 361–370 (2014)CrossRefGoogle Scholar
  8. 8.
    C.T.-S. Ching, T.-P. Sun, W.-T. Huang, S.-H. Huang, C.-S. Hsiao, K.-M. Chang, A circuit design of a low-cost, portable and programmable electroporation device for biomedical applications. Sens. Actuators B: Chem. 166, 292–300 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Devices, 1 MSPS, 12-Bit Impedance Converter, Network Analyzer AD5933 Datasheet. Rev. E (2013)Google Scholar
  10. 10.
    W. Ehm, H. Gohr, R. Kaus, B. Roseler, C. Schiller, The evaluation of electrochemical impedance spectra using a modified logarithmic Hilbert transform. ACH-Models Chem. 137(2–3), 145–157 (2000)Google Scholar
  11. 11.
    J.M. Esteban, M.E. Orazem, On the application of the Kramers–Kronig relations to evaluate the consistency of electrochemical impedance data. J. Electrochem. Soc. 138(1), 67–76 (1991)CrossRefGoogle Scholar
  12. 12.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 52(9), 749–758 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Grosse, V. Offermann, Analysis of reflectance data using the Kramers–Kronig relations. Appl. Phys. A 52(2), 38–144 (1991)CrossRefGoogle Scholar
  14. 14.
    S.L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Norwood, 1996)zbMATHGoogle Scholar
  15. 15.
    J. Hoja, G. Lentka, A family of new generation miniaturized impedance analyzers for technical object diagnostics. Metrol. Meas. Syst. 20(1), 43–52 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Jamaludin, S.A. Aziz, D. Ahmad, H.Z. Jaafar, Impedance analysis of Labisia Pumila plant water status. Inf. Process. Agric. 2(3), 161–168 (2015)Google Scholar
  17. 17.
    Y.-H. Kim, J.-S. Park, H.-I. Jung, An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sens. Actuators B: Chem. 138(1), 270–277 (2009)CrossRefGoogle Scholar
  18. 18.
    F.W. King, Hilbert Transforms, vol. 2 (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    R.D.L. Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12(6), 547–557 (1926)CrossRefGoogle Scholar
  20. 20.
    C. Leon, J. Martin, J. Sanatamaria, J. Skarp, G. Gonzalez-Diaz, F. Sanchez-Quesada, Use of Kramers–Kronig transforms for the treatment of admittance spectroscopy data of p–n junctions containing traps. J. Appl. Phys. 79(10), 7830–7836 (1996)CrossRefGoogle Scholar
  21. 21.
    D.D. Macdonald, M. Urquidi-Macdonald, Application of Kramers–Kronig transforms in the analysis of electrochemical systems I. Polarization resistance. J. Electrochem. Soc. 132(10), 2316–2319 (1985)CrossRefGoogle Scholar
  22. 22.
    B. Maundy, A. Elwakil, A. Allagui, Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 119(C), 153–157 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Mehra, V. Kumar, P. Gupta, Maturity and disease detection in tomato using computer vision, in IEEE International Conference on Parallel, Distributed and Grid Computing, pp. 399–403 (2016)Google Scholar
  24. 24.
    Newton 4th LTD, U., IAI Impedance Analysis Interface User Manual (2015)Google Scholar
  25. 25.
    S. Papezova, Signal processing of bioimpedance equipment. Sens. Actuators B: Chem. 95(1–3), 328–335 (2003)CrossRefGoogle Scholar
  26. 26.
    T. Piasecki, K. Chabowski, K. Nitsch, Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement 91, 155–161 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Pritz, Unbounded complex modulus of viscoelastic materials and the Kramers–Kronig relations. J. Sound Vib. 279(3–5), 687–697 (2005)CrossRefGoogle Scholar
  28. 28.
    T. Radil, P.M. Ramos, A.C. Serra, DSP based portable impedance measurement instrument using sine-fitting algorithms, in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, vol. 2 (2005), pp. 1018–1022Google Scholar
  29. 29.
    T. Radil, P.M. Ramos, A.C. Serra, Impedance measurement with sine-fitting algorithms implemented in a DSP portable device. IEEE Trans. Instrum. Meas. 57(1), 197–204 (2008)CrossRefGoogle Scholar
  30. 30.
    P.M. Ramos, F.M. Janeiro, Implementation of DSP based algorithms for impedance measurements, in IEEE International Conference on Signal Processing and Communications, ICSPC2007 (2007), pp. 816–819Google Scholar
  31. 31.
    P.M. Ramos, F.M. Janeiro, T. Radil, Comparison of impedance measurements in a DSP using ellipse-fit and seven-parameter sine-fit algorithms. Measurement 42(9), 1370–1379 (2009)CrossRefGoogle Scholar
  32. 32.
    E.J. Rose, D. Pamela, K. Rajasekaran, Apple vitality detection by impedance measurement. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 9, 144–148 (2013)Google Scholar
  33. 33.
    F. Seone, I. Mochino-Herranz, J. Ferreira, L. Alvarez, R. Buendia, D. Ayllon, C. Llerena, R. Gil-Pita, Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14, 7120–7141 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Shih, F. Mansfeld, Concerning the use of the Kramers–Kronig transforms for the validation of impedance data. Corros. Sci. 28(9), 933–938 (1988)CrossRefGoogle Scholar
  35. 35.
    H. Shih, F. Mansfeld, Should the Kramers–Kronig transforms be used for the validation of experimental impedance data. Corrosion 45(4), 325–327 (1989)CrossRefGoogle Scholar
  36. 36.
    V. Shtrauss, FIR Kramers–Kronig transformers for relaxation data conversion. Signal Process. 86(10), 2887–2900 (2006)CrossRefzbMATHGoogle Scholar
  37. 37.
    M. Simic, Realization of complex impedance measurement system based on the integrated circuit AD5933, in 21st Telecommunications Forum (TELFOR) (2013), pp. 573–576Google Scholar
  38. 38.
    V.A. Tyagal, G.Y. Kolbasove, Use of the Kreamers–Kronig experssions for the analysis of low-frequency impedance. J. Electrochem. Soc. 8, 54–56 (1972)Google Scholar
  39. 39.
    M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Application of Kramers–Kronig transforms in the analysis of electrochemical systems II. Transformations in the complex plane. J. Electrochem. Soc. 133(10), 2018–2024 (1986)CrossRefGoogle Scholar
  40. 40.
    M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Applications of Kramers–Kronig transforms in the analysis of electrochemical impedance data III. Stability and linearity. Electrochim. Acta 35(10), 1559–1566 (1990)CrossRefGoogle Scholar
  41. 41.
    V. Valente, A. Demosthenous, Wideband fully-programmable dual-mode CMOS analogue front-end for electrical impedance spectroscopy. Sensors 6(8), 1159–1179 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt
  4. 4.Department of Electrical and Computer EngineeringUniversity of AlabamaTuscaloosaUSA

Personalised recommendations