Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3364–3382 | Cite as

Robust Fault Detection for Observer-Based Feedback Control Systems

  • Zhengen Zhao
  • Ying Yang
  • Steven X. Ding
  • Linlin Li
Article
  • 142 Downloads

Abstract

This paper is devoted to the issues of robust fault detection for a class of observer-based feedback control systems with model uncertainties, disturbances and faults. As the observer-based feedback controller structure allows a direct access to the residual signal, a robust post-filter is designed such that the modified residual satisfies the optimized robustness against disturbances under a desired sensitivity to faults. Moreover, the detection performance of the designed fault detection system is analyzed. Simulation results are given at the end of the paper to demonstrate the effectiveness of the proposed schemes.

Keywords

Fault detection Observer-based control Post-filter Fault detection in feedback systems Fault detection performance 

References

  1. 1.
    D.U. Campos-Delgado, S. Martinez-Martinez, K. Zhou, Integrated fault-tolerant scheme for a DC speed drive. IEEE/ASME Trans. Mechatron. 10(4), 419–427 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Chadli, A. Abdo, S.X. Ding, \(H_-/H_\infty \) fault detection filter design for discrete-time Takagi–Sugeno fuzzy system. Automatica 49(7), 1996–2005 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    M. Chilali, P. Gahinet, P. Apkarian, Robust pole placement in LMI regions. IEEE Trans. Autom. Control 44(12), 2257–2270 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    S.X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer, Berlin, 2013)CrossRefMATHGoogle Scholar
  5. 5.
    S.X. Ding, Integrated design of feedback controllers and fault detectors. Annu. Rev. Control 33(2), 124–135 (2009)CrossRefGoogle Scholar
  6. 6.
    S.X. Ding, Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems (Springer, Berlin, 2014)CrossRefGoogle Scholar
  7. 7.
    S.X. Ding, G. Yang, P. Zhang, E.L. Ding, T. Jeinsch, N. Weinhold, M. Schultalbers, Feedback control structures, embedded residual signals, and feedback control schemes with an integrated residual access. IEEE Trans. Control Syst. Technol. 18(2), 352–367 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Dong, Z. Wang, H. Gao, Distributed \(H_\infty \) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks. IEEE Trans. Ind. Electron. 60(10), 4665–4672 (2013)CrossRefGoogle Scholar
  9. 9.
    P. Gahinet, P. Apkarian, A linear matrix inequality approach to \(H_\infty \) control. Int. J. Robust Nonlinear Control 4(4), 421–448 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. Henry, A. Zolghadri, Design and analysis of robust residual generators for systems under feedback control. Automatica 41(2), 251–264 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Z. Hu, G. Zhao, L. Zhang, D. Zhou, Fault estimation for nonlinear dynamic system based on the second-order sliding mode observer. Circuits Syst. Signal Process. 35(1), 101–115 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Jacobson, C. Nett, An integrated approach to controls and diagnostics using the four parameter controller. IEEE Trans. Control Syst. Technol. 11(6), 22–29 (1991)CrossRefGoogle Scholar
  14. 14.
    M.J. Khosrowjerdi, R. Nikoukhah, N. Safari-Shad, A mixed \(H_2/H_\infty \) approach to simultaneous fault detection and control. Automatica 40(2), 261–267 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. Lan, R.J. Patton, A new strategy for integration of fault estimation within fault-tolerant control. Automatica 69, 48–59 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. Marcos, G.J. Balas, A robust integrated controller/diagnosis aircraft application. Int. J. Robust Nonlinear Control 15(12), 531–551 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    H. Pan, X. Jing, W. Sun, H. Gao, A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems. IEEE Trans. Control Syst. Technol. (2017).  https://doi.org/10.1109/TCST.2017.2699158 Google Scholar
  18. 18.
    R.J. Patton, P.M. Frank, R.N. Clark, Issues of Fault Diagnosis for Dynamic Systems (Springer, London, 2000)CrossRefGoogle Scholar
  19. 19.
    K. Peng, K. Zhang, B. You, J. Dong, Z. Wang, A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Trans. Ind. Electron. 63(4), 2615–2624 (2016)Google Scholar
  20. 20.
    B. Shen, S.X. Ding, Z. Wang, Finite-horizon \(H_\infty \) fault estimation for linear discrete time-varying systems with delayed measurements. Automatica 49(1), 293–296 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B. Shen, S.X. Ding, Z. Wang, Finite-horizon \(H_\infty \) fault estimation for uncertain linear discrete time-varying systems with known inputs. IEEE Trans. Circuits Syst. II Express Briefs 60(12), 902–906 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Stoustrup, M. Grimble, H. Niemann, Design of integrated systems for the control and detection of actuator/sensor faults. Sens. Rev. 17(2), 138–149 (1997)CrossRefGoogle Scholar
  23. 23.
    W. Sun, H. Pan, H. Gao, Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65(6), 4619–4626 (2016)CrossRefGoogle Scholar
  24. 24.
    H.D. Tuan, P. Apkarian, T.Q. Nguyen, Robust filtering for uncertain nonlinearly parameterized plants. IEEE Trans. Signal Process. 51(7), 1806–1815 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Y. Wang, S.X. Ding, D. Xu, B. Shen, An \(H_\infty \) fault estimation scheme of wireless networked control systems for industrial real-time applications. IEEE Trans. Control Syst. Technol. 22(6), 2073–2086 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Wei, J. Qiu, X. Peng, H.K. Lam, T-S fuzzy-affine-model-based reliable output feedback control of nonlinear systems with actuator faults. Circuits Syst. Signal Process (2017).  https://doi.org/10.1007/s00034-017-0547-0 Google Scholar
  27. 27.
    N.E. Wu, Robust feedback design with optimized diagnostic performance. IEEE Trans. Autom. Control 42(9), 1264–1268 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G.H. Yang, H. Wang, Fault detection for a class of uncertain state-feedback control systems. IEEE Trans. Control Syst. Technol. 18(1), 201–212 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Yang, S.X. Ding, L. Li, Parameterization of nonlinear observer-based fault detection systems. IEEE Trans. Autom. Control 61(11), 3687–3692 (2016)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Y. Yang, Y. Zhang, S.X. Ding, L. Li, Design and implementation of lifecycle management for industrial control applications. IEEE Trans. Control Syst. Technol. 23(4), 1399–1410 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee eastman process. J. Process Control 22(9), 1567–1581 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Yin, H. Luo, S.X. Ding, Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Trans. Ind. Electron. 61(5), 2402–2411 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.Institute for Automatic Control and Complex SystemsUniversity of Duisburg-EssenDuisburgGermany
  3. 3.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations