Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3605–3634 | Cite as

Reverse Converters for the Moduli Set {\(2^{n}, 2^{n-1}-1,2^{n}-1, 2^{n+1}-1\}(n\,\hbox {Even})\)

  • P. V. Ananda Mohan
Article

Abstract

In this paper, two residue number system (RNS) to binary converters for the moduli set {\(2^{n}, 2^{n-1}-1,2^{n}-1, 2^{n+1}-1\}\) for (n even) are presented. One of them uses a two-level conversion, in which, in the first level, two pairs of moduli are considered to obtain two intermediate decoded numbers. A second-level converter obtains the final decoded number corresponding to these two intermediate decoded numbers. Both levels use mixed radix conversion. The second proposed RNS to binary converter uses the conventional MRC of the four-moduli set. The proposed converters are compared with previously reported conversion techniques for this moduli set and converters for other four, five and eight moduli sets for realizing similar dynamic ranges regarding hardware requirement and conversion time. The hardware resource requirement (A), conversion time (T), AT and \(AT^{2}\) trade-offs are discussed to bring out the relative advantages of various converters. The proposed converters have been shown to need less hardware or less conversion time than the other some of the reported converters for this moduli set. It has been shown by detailed comparison that converters using conjugate moduli and vertical extension generally exhibit better performance (lower hardware /lower conversion time) than those using no vertical extension, while needing differing word lengths of various moduli. These, however, need slightly complex multipliers/adders in the \((2^{n} +1)\) channel. Implementation results on FPGA of the proposed converters for few dynamic ranges also have been presented.

Keywords

Residue number systems Reverse converters Four-moduli sets CRT Mixed radix conversion 

References

  1. 1.
    P.V. Ananda Mohan, Residue Number Systems: Algorithms and Architectures (Kluwer Academic Publishers, New York, 2002)CrossRefGoogle Scholar
  2. 2.
    P.V. Ananda Mohan, RNS to binary converter for the new three moduli set \(2^{n+1} -1, 2^{n}, 2^{n}-1\). IEEE Trans. Circuits Syst. II Express Brief 54(9), 775–779 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P.V. Ananda Mohan, New reverse converters for the moduli set \(2^{n}-3, 2^{n}+1, 2^{n}-1, 2^{n}+3\). AEU 62, 643–658 (2008)Google Scholar
  4. 4.
    P.V. Ananda Mohan, A.B. Premkumar, RNS to Binary converters for two four moduli sets \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}-1 \) and \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}+1\). IEEE Trans. Circuits Syst. I 54, 1245–1254 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Bhardwaj, T. Srikanthan , C.T. Clarke, A reverse converter for the 4 moduli super set \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}+1\), in IEEE Conference on Computer Arithmetic (1999), pp. 168–175Google Scholar
  6. 6.
    B. Cao, T. Srikanthan, C.H. Chang, Efficient reverse converters for the four-moduli sets \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}-1\) and \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n-1}-1\). IEE Proc. Comput. Digit. Tech. 152, 687–696 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    B. Cao, C.H. Chang, T. Srikanthan, An efficient reverse converter for the 4-moduli set \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{2n}+1\) based on the new Chinese remainder theorem. IEEE Trans. Circuits Syst. I 50, 1296–1303 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Cao, C.H. Chang, T. Srikanthan, A residue to binary converter for a new five-moduli set. IEEE Trans. Circuits Syst. I 54, 1041–1049 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    G. Chalivendra, V. Hanumaiah, S. Vrudhula, A new balanced 4-moduli set \(2^{k}, 2^{n}-1, 2^{n}+1, 2^{n+1}-1\) and its reverse converter design for efficient reverse converter implementation, in Proceedings of ACM GSVLSI, (Lausanne, Switzerland, 2011), pp. 139–144Google Scholar
  10. 10.
    A. Dhurkadas, Comments on A high-speed realization of a residue to binary number system converter. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 45(3), 446–447 (1998)CrossRefGoogle Scholar
  11. 11.
    L.S. Didier, P.Y. Rivaille, A generalization of a fast RNS conversion for a new 4-modulus base. IEEE Trans. Circuits Syst. II Express Br. 56, 46–50 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Esmaeildoust, K. Navi, M. Taheri, A.S. Molahosseini, S. Khodambashi, Efficient RNS to binary converters for the new 4-moduli set \(2^{n}, 2^{n+1} -1, 2^{n}-1, 2^{n-1} -1\). IEICE Electron. Express 9(1), 1–7 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, K. Navi, Efficient RNS implementation of elliptic curve point multiplication over GF(\(p)\). IEEE Trans. VLSI Syst. 21, 1545–1549 (2013)CrossRefGoogle Scholar
  14. 14.
    A.A. Hiasat, VLSI implementation of new arithmetic residue to binary decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13, 153–158 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Hosseinzadeh, A. Molahosseini, K. Navi, An improved reverse converter for the moduli set \(2^{n}+1, 2^{n}-1, 2^{n}, 2^{n+1}-1\). IEICE Electron. Express 5, 672–677 (2008)CrossRefGoogle Scholar
  16. 16.
    G. Jaberipur, H. Ahmadifar, A ROM-less reverse converter for moduli set \(2^{q}\pm 1, 2^{q}\pm 3\). IET Comput. Digit. Tech. 8, 11–22 (2014)CrossRefGoogle Scholar
  17. 17.
    A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, S. Timarchi, Efficient reverse converter designs for the new 4-moduli sets \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{2n+1}-1\) and \(2^{n}-1, 2^{n}+1, 2^{2n}, 2^{2n}+1\) based on new CRTs. IEEE Trans. Circuits Syst. I 57, 823–835 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Omondi, B. Premkumar, Residue Number Systems: Theory and Implementation (Imperial College Press, London, 2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    P. Patronik, S.J. Piestrak, Design of reverse converters for the new RNS moduli set \(2^{n}+1, 2^{n}, 2^{n}-1, 2^{n-1} +1\) (\(n\) odd). IEEE Trans. Circuits Syst. I 61, 3436–3449 (2014)CrossRefzbMATHGoogle Scholar
  20. 20.
    P. Patronik, S.J. Piestrak, Design of reverse converters for general RNS moduli sets \(2^{k}, 2^{n}-1, 2^{n}+1, 2^{n+1}-1\) and \(2^{k}, 2^{n}-1, 2^{n}+1, 2^{n-1}-1\) (\(n\) even). IEEE Trans. Circuits Syst. I 61, 1687–1700 (2014)CrossRefzbMATHGoogle Scholar
  21. 21.
    H. Pettenghi, R. Chaves, L. Sousa, Method to design general RNS converters for extended moduli sets. IEEE Trans. Circuits Syst. II 60, 877–881 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Pettenghi, R. Chaves, L. Sousa, RNS reverse converters for moduli sets with dynamic ranges up to (8\(n\)+1) bits. IEEE Trans. Circuits Syst. 60, 1487–1500 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S.J. Piestrak, A high-speed realization of residue to binary system converter. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 42(10), 661–663 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Skavantzos, T. Stouraitis, Grouped-moduli residue number systems for fast signal processing, in Proceedings of IEEE ISCAS (1999), pp. 478–483Google Scholar
  25. 25.
    A. Skavantzos, M. Abdallah, Implementation issues of the two-level residue number system with pairs of conjugate moduli. IEEE Trans. Signal Process. 47, 826–838 (1999)CrossRefGoogle Scholar
  26. 26.
    A. Skavantzos, M. Abdallah, T. Stouraitis, D. Schinianakis, Design of a balanced 8-modulus RNS, in Proceedings of IEEE ISCAS (2009), pp. 61–64Google Scholar
  27. 27.
    M.H. Sheu, S.H. Lin, C. Chen, S.W. Yang, An efficient VLSI design for a residue to binary converter for general balance moduli (\(2^{n}-3, 2^{n}-1, 2^{n}+1, 2^{n}+3\)). IEEE Trans. Circuits Syst. Express Br. 51, 52–55 (2004)Google Scholar
  28. 28.
    M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, F.J. Taylor, Residue Number System Arithmetic: Modern Applications in Signal Processing (IEEE Press, New York, 1986)zbMATHGoogle Scholar
  29. 29.
    L. Sousa, S. Antao, R. Chaves, On the design of RNS reverse converters for the four-moduli set \(2^{n}+1, 2^{n}-1, 2^{n}, 2^{n+1}+1\). IEEE Trans. VLSI Syst. 21, 1945–1949 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Sousa, S. Antao, MRC based RNS reverse converters for the four-moduli sets \(2^{n}+1,2^{n}-1,2^{n}, 2^{2n+1}-1\) and \(2^{n}+1,2^{n}-1,2^{2n}, 2^{2n+1}-1\). IEEE Trans. Circuits Syst. II 59, 244–248 (2012)CrossRefGoogle Scholar
  31. 31.
    N. Stamenkovic, B. Jovanovic, Reverse converter design for the 4-moduli set \(2^{n}-1,2^{n},2^{n}+1,2^{2n+1}-1\) based on the mixed-radix conversion. Facta Univ. (NIS) Ser. Electron. Energ. 24, 91–105 (2011)Google Scholar
  32. 32.
    N.S. Szabo, R.I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (Mc-Graw Hill, New York, 1967)zbMATHGoogle Scholar
  33. 33.
    M.R. Taheri, N. Shafiee, M. Esmaeildoust, Z. Amirjamshidi, R. Sabbaghi-nadooshan, K. Navi, A high speed residue-to-binary converter for balanced 4-moduli set. J. Comput. Secur. 2, 43–54 (2015)Google Scholar
  34. 34.
    A. Tyagi, A reduced-area scheme for carry-select adders. IEEE Trans. Comput. 42, 1163–1170 (1993)CrossRefGoogle Scholar
  35. 35.
    A.P. Vinod, A.B. Premkumar, A residue to binary converter for the 4-moduli superset \(2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}-1\). JCSC 10, 85–99 (2000)Google Scholar
  36. 36.
    Y. Wang, X. Song, M. Aboulhamid, H. Shen, Adder-based residue to binary number converters for \(2^{n+}1 -1, 2^{n}, 2^{n}-1\). IEEE Trans. Signal Process. 50(7), 1772–1779 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Z. Wang, G.A. Jullien, W.C. Miller, An improved residue to binary converter. IEEE Trans. Circuits Syst. I 47, 1437–1440 (2000)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Y. Wang, Residue to binary converters based on new Chinese remainder theorems. IEEE Trans. Circuits Syst. II 47, 197–205 (2000)CrossRefzbMATHGoogle Scholar
  39. 39.
    M. Wesolowski, P. Patronik, K. Berezowski, J. Biernat, Design of a novel flexible 4-moduli RNS and reverse converter, in Proceedings of Signals and Systems Conference (IS SC 2012), IET Irish, IET (2012), pp 1–6Google Scholar
  40. 40.
    W. Zhang, P. Siy, An efficient design of residue to binary converter for the moduli set \(2^{n}-1, 2^{n}+1, 2^{2n}-2, 2^{2n+1}-3\) based on new CRT II. Elsevier J. Inf. Sci. 178, 264–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centre For Development of Advanced ComputingBangaloreIndia

Personalised recommendations