Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 8, pp 3515–3536 | Cite as

Breaking the Limits: Redefining the Instantaneous Frequency

  • Pushpendra Singh
Article

Abstract

The Carson and Fry introduced the concept of variable frequency as a generalization of the constant frequency. The instantaneous frequency (IF) is the time derivative of the instantaneous phase, and it is well defined only when this derivative is positive. If this derivative is negative, the IF creates problem because it does not provide any physical significance. This study proposes a mathematical solution and eliminates this problem by redefining the IF such that it is valid for all monocomponent, multicomponent signals of nonlinear and nonstationary nature. This is achieved by using the property of the multivalued inverse tangent function that provides base to ensure that the instantaneous phase is an increasing function. The efforts and understanding of all the methods based on the IF would improve significantly by using this proposed definition of the IF. We also demonstrate that the decomposition of a signal, using zero-phase filtering based on the well-established Fourier and filter theory, into a set of desired frequency bands with proposed IF produces accurate time–frequency–energy (TFE) distribution that reveals true nature of signal. Simulation results demonstrate the efficacy of the proposed IF that makes zero-phase filter-based decomposition most powerful for the TFE analysis of a signal.

Keywords

Analytic signal (AS) Hilbert transform (HT) An increasing (or a nondecreasing)  function Instantaneous frequency (IF) Linearly independent nonorthogonal yet energy preserving (LINOEP)  vectors Zero-phase filtering (ZPF) 

Notes

Acknowledgements

Author would like to show his gratitude to the Prof. S. D. Joshi (IITD), Prof. R. K. Pateny (IITD), and Dr. Kaushik Saha (CTO, Samsung R&D Institute India—Delhi) for sharing their wisdom and expertise during this research.

References

  1. 1.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. PRL 116, 061102 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. Part 1: fundamentals. Proc. IEEE 80(4), 520–538 (1992)CrossRefGoogle Scholar
  3. 3.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. Part 2: algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)CrossRefGoogle Scholar
  4. 4.
    B. Boashash, Time Frequency Signal Analysis and Processing: A Comprehensive Reference (Elsevier, Boston, 2003)Google Scholar
  5. 5.
    J. Carson, T. Fry, Variable frequency electric circuit theory with application to the theory of frequency modulation. Bell Syst. Tech. J. 16, 513–540 (1937)CrossRefzbMATHGoogle Scholar
  6. 6.
    L. Cohen, Time–Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)Google Scholar
  7. 7.
    D.A. Cummings, R.A. Irizarry, N.E. Huang, T.P. Endy, A. Nisalak, K. Ungchusak, D.S. Burke, Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427, 344–347 (2004)CrossRefGoogle Scholar
  8. 8.
    I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B. Demir, S. Erturk, Empirical mode decomposition of hyperspectral images for support vector machine classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4071–4084 (2010)Google Scholar
  10. 10.
    K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295(3–5), 518–530 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    D. Gabor, Theory of communication. Proc. IEE 93(III), 429–457 (1946)Google Scholar
  13. 13.
    J. Gilles, Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Z. He, Q. Wang, Y. Shen, M. Sun, Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features. IEEE Trans. Geosci. Remote Sens. 52(8), 5150–5163 (2014)CrossRefGoogle Scholar
  15. 15.
    F.B. Hildebrand, Advanced Calculus for Engineers (Prentice-Hall, Englewood Cliffs, 1949)zbMATHGoogle Scholar
  16. 16.
    T.Y. Hou, Z. Shi, Adaptive data analysis via sparse time–frequency representation. Adv. Adapt. Data Anal. 3(1&2), 1–28 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    N.E. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, H. Liu, The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995 (1988)CrossRefzbMATHGoogle Scholar
  18. 18.
    N.E. Huang, Z. Wu, A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46, 1–23 (2008).  https://doi.org/10.1029/2007RG000228 CrossRefGoogle Scholar
  19. 19.
    P. Jain, R.B. Pachori, An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Frankl. Inst. 352(10), 4017–4044 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Li, S. Tong, Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead-zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Li, S. Sui, S. Tong, Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)Google Scholar
  22. 22.
    P.J. Loughlin, B. Tacer, Comments on the interpretation of instantaneous frequency. IEEE Signal Process. Lett. 4(5), 123–125 (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    D.P. Mandic, N. Rehman, Z. Wu, N.E. Huang, Empirical mode decomposition-based time–frequency analysis of multivariate signals. IEEE Signal Process. Mag. 30, 74–86 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Meignen, V. Perrier, A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 14(12), 932–935 (2007)CrossRefGoogle Scholar
  25. 25.
    N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition. Proc. R. Soc. A 466, 1291–1302 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I.W. Selesnick, Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process. 91(12), 2793–2809 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Hilbert spectrum and the energy preserving empirical mode decomposition. arXiv:1504.04104 [cs.IT] (2015)
  28. 28.
    P. Singh, S.D. Joshi, R.K. Patney, K. Saha, Some studies on nonpolynomial interpolation and error analysis. Appl. Math. Comput. 244, 809–821 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    P. Singh, P.K. Srivastava, R.K. Patney, S.D. Joshi, K. Saha, Nonpolynomial spline based empirical mode decomposition, in 2013 International Conference on Signal Processing and Communication (ICSC). (2013), pp. 435–440Google Scholar
  30. 30.
    P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The linearly independent non orthogonal yet energy preserving (LINOEP) vectors. arXiv:1409.5710 [math.NA] (2014)
  31. 31.
    P. Singh, Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis. Ph.D. thesis, Department of Electrical Engineering, IIT Delhi, India, 2016Google Scholar
  32. 32.
    P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A (2017).  https://doi.org/10.1098/rspa.2016.0871 Google Scholar
  33. 33.
    P. Singh, Time–frequency analysis via the Fourier representation. arXiv:1604.04992 [cs.IT] (2016)
  34. 34.
    P. Singh, S.D. Joshi, Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and space–time series analysis. arXiv:1507.08117 [cs.IT] (2015)
  35. 35.
    P. Singh, LINOEP vectors, spiral of Theodorus, and nonlinear time-invariant system models of mode decomposition. arXiv:1509.08667 [cs.IT] (2015)
  36. 36.
    P. Singh, S.D. Joshi, R.K. Patney, K. Saha, Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circuits Syst. Signal Process. 35(10), 3700–3715 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    B. Van der Pol, The fundamental principles of frequency modulation. Proc. IEE 93(111), 153–158 (1946)MathSciNetGoogle Scholar
  38. 38.
    J. Ville, Theorie et application de la notion de signal analytic, Cables et Transmissions 2A(1), 61–74, Paris, France, 1948 (Translation by I. Selin, Theory and applications of the notion of complex signal, Report T-92, RAND Corporation, Santa Monica, CA)Google Scholar
  39. 39.
    Y. Wang, J. Orchard, Fast Discrete orthonormal stockwell transform. SIAM J. Sci. Comput. 31(5), 4000–4012 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)CrossRefGoogle Scholar
  41. 41.
    W.X. Yang, Interpretation of mechanical signals using an improved Hilbert–Huang transform. Mech. Syst. Signal Process. 22, 1061–1071 (2008)CrossRefGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
  45. 45.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Engineering and Applied Sciences (SEAS)Bennett UniversityGreater NoidaIndia

Personalised recommendations