A difference method for the McKean–Vlasov equation

  • Giuseppe Maria CocliteEmail author
  • Nils Henrik Risebro


We analyze a model equation arising in option pricing. This model equation takes the form of a nonlinear, nonlocal diffusion equation. We prove the well posedness of the Cauchy problem for this equation. Furthermore, we introduce a semidiscrete difference scheme and show its rate of convergence.


Option pricing Well posedness Difference scheme Rate of convergence 

Mathematics Subject Classification

35R09 35K67 74S20 



  1. 1.
    Abergel, F., Tachet, R.: A nonlinear partial integro-differential equation from mathematical finance. Discrete Contin. Dyn. Syst. 27(3), 907–917 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Black, F., Scholes, M.: The effects of dividend yield and dividend policy on common stock prices and returns. J. Financ. Econ. 1(1), 1–22 (1974)CrossRefGoogle Scholar
  3. 3.
    Coclite, G.M., Reichmann, O., Risebro, N.H.: A convergent difference scheme for a class of partial integro-differential equations modeling pricing under uncertainty. SIAM J. Numer. Anal. 54(2), 588–605 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Guyon, J., Henry-Labordere, P.: The smile calibration problem solved. Available at SSRN. 1885032 (2011)Google Scholar
  5. 5.
    Henry-Labordere, P.: Calibration of local stochastic volatility models to market smiles: a Monte-Carlo approach, Risk Mag. (2009) Google Scholar
  6. 6.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hull, J., White, A.: The general Hull–White model and supercalibration. Financ. Anal. J. 57(6), 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Lieb, E.H., Loss, M.: Analysis (Graduate Studies in Mathematics), vol. 14, 2nd edn. American Mathematical Society, Providence (2001) Google Scholar
  9. 9.
    Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sznitman, A.S.: Topics in propagation of chaos. In: Hennequin P.L. (ed.) Ecole d’Eté de Probabilités de Saint-Flour XIX — 1989. Lecture Notes in Mathematics, vol 1464. Springer, Berlin, Heidelberg (1991) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanics, Mathematics and ManagementPolytechnic University of BariBariItaly
  2. 2.Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations