Advertisement

Global boundedness of solutions resulting from both the self-diffusion and the logistic-type source

  • Wei WangEmail author
Article

Abstract

This paper is concerned with the zero-flux logistic chemotaxis system with nonlinear signal production: \(u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+f(u)\), \(v_t=\Delta v-v+g(u)\) in a bounded and smooth domain \(\Omega \subset {\mathbb {R}}^n\) (\(n\ge 1\)), where \(\chi >0\) is a constant, and \(f,g\in C^1({\mathbb {R}})\) generalize the prototypes \(f(s)=s-\mu s^{\alpha }\) and \(g(s)=s(s+1)^{\beta -1}\) with \(\alpha >1\) and \(\beta ,\mu >0\). The existing studies, for the case that the self-diffusion or the logistic-type source prevails over the cross-diffusion singly, have asserted the global boundedness of solutions under the assumption that \(\beta <\frac{2}{n}\), or \(\beta <\alpha -1\), or \(\beta =\alpha -1\) with \(\mu >0\) suitably large. In the present paper, we prove that if \(\alpha -1=\beta =\frac{2}{n}\), then due to the self-diffusion and the logistic kinetics working together, the solutions are globally bounded regardless of the size of \(\mu >0\). Note that \(\alpha -1=\beta =\frac{2}{n}\) reduces to \(\alpha =2\) and \(\beta =1\) if \(n=2\). Hence, our result covers that of the two-dimensional classical chemotaxis system with logistic source: \(u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+u-\mu u^2\), \(v_t=\Delta v-v+u\) (Osaki et al. in Nonlinear Anal 51:119–144, 2002).

Keywords

Chemotaxis Nonlinear signal production Logistic-type source Global boundedness Fully parabolic 

Mathematics Subject Classification

35B33 35B45 35K59 92C17 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (DUT19LK42).

References

  1. 1.
    Amann, H.: Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory. Birkhäuser, Basel (1995)CrossRefGoogle Scholar
  2. 2.
    Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 412, 181–188 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston Inc., New York (1969)zbMATHGoogle Scholar
  7. 7.
    Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super Pisa Cl. Sci. 24, 633–683 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lin, K., Mu, C.: Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 36, 5025–5046 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, D., Tao, Y.: Boundedness in a chemotaxis system with nonlinear signal production. Appl. Math. J. Chin. Univ. Ser. B 31, 379–388 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mizoguchi, N., Winkler, M.: Finite-time blow-up in the two-dimensional Keller–Segel system. PreprintGoogle Scholar
  13. 13.
    Nakaguchi, E., Osaki, K.: Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation. Nonlinear Anal. 74, 286–297 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nakaguchi, E., Osaki, K.: Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete Contin. Dyn. Syst. Ser. B 18, 2627–2646 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nakaguchi, E., Osaki, K.: Global existence of solutions to an n-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production. Osaka J. Math. 55, 51–70 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439, 197–212 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34, 520–535 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69(2), 40 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zheng, J.: Boundedness of solutions to a quasilinear parabolic-parabolic Keller–Segel system with a logistic source. J. Math. Anal. Appl. 431, 867–888 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhuang, M., Wang, W., Zheng, S.: Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Anal. Real World Appl. 47, 473–483 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations