Effects of surface/interface elasticity on the screw dislocation-induced stress field in an elastic film–substrate system

  • Ming Dai
  • Peter SchiavoneEmail author


In the analysis of continuum-based models describing the dislocation mechanism for a film–substrate system, it is customary to treat the surface of the film as ‘traction-free’ or ‘perfectly bonded’ to the substrate. For an ultra-thin film, however, the appreciable surface to volume ratio is known to be responsible for considerable surface energies which contribute significantly to the overall deformation of the structure. Consequently, in order to ensure a sufficiently accurate account of the corresponding dislocation behavior, it becomes necessary to incorporate the contribution of surface/interface effects into the description of deformation of the film surface or film–substrate interface. In this paper, we study the effects of surface/interface elasticity on the mechanical behavior of a screw dislocation embedded in a thin film bonded to an elastic substrate. Using conformal mapping techniques, we derive a semi-analytical solution for the dislocation-induced stress field in the film–substrate system. Our results show that when the thickness of the film approaches the nanoscale, failure to incorporate surface/interface elasticity into the description of the corresponding surface or interface may induce significant errors in the stress field and in any predictions involving the mobility of the dislocation. More specifically, we show that whereas the incorporation of surface elasticity with positive shear modulus always relieves the stress concentration on the surface of the film–substrate system, interface elasticity with positive shear modulus can either relieve or intensify the stress concentration (for the film) on the film–substrate interface depending on the stiffness of the substrate. In particular, for an ultra-thin film bonded to a soft substrate, we find that the presence of interface elasticity greatly influences the (unstable) equilibrium position of the dislocation in the film.


Dislocation Surface/interface elasticity Image force Thin film Conformal mapping 

Mathematics Subject Classification

74K35 74G10 74S70 



Dai appreciates the Natural Science Foundation of Jiangsu Province (Application No. SBK2019040621), a start-up grant of the Nanjing University of Aeronautics and Astronautics and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for their support through a Discovery Grant (Grant # RGPIN – 2017 - 03716115112).


  1. 1.
    Jackson, P., Hariskos, D., Lotter, E., et al.: New world record efficiency for Cu(In, Ga)\(\text{ Se }_{2}\) thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)CrossRefGoogle Scholar
  2. 2.
    Hages, C.J., Levcenco, S., Miskin, C.K., et al.: Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog. Photovolt. Res. Appl. 23, 376–384 (2015)CrossRefGoogle Scholar
  3. 3.
    Bates, J.B., Dudney, N.J., Neudecker, B., et al.: Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000)CrossRefGoogle Scholar
  4. 4.
    Li, Q., Ardebili, H.: Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J Power Sources 303, 17–21 (2016)CrossRefGoogle Scholar
  5. 5.
    Kamiya, T., Nomura, K., Hosono, H.: Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  6. 6.
    Wager, J.F., Yeh, B., Hoffman, R.L., et al.: An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18, 53–61 (2014)CrossRefGoogle Scholar
  7. 7.
    Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217–2245 (1989)CrossRefGoogle Scholar
  8. 8.
    Leibfried, G., Dietze, H.D.: Zur theorie der schraubenversetzung. Z. Phys. 126, 790–808 (1949)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chou, Y.T.: Screw dislocations in and near lamellar inclusions. Phys. Status Solidi B 17, 509–516 (1966)CrossRefGoogle Scholar
  10. 10.
    Lin, L.S., Chou, Y.T.: Screw dislocations in a three-phase anisotropic medium. Int. J. Eng. Sci. 13, 317–325 (1975)CrossRefGoogle Scholar
  11. 11.
    Kamat, S.V., Hirth, J.P., Carnahan, B.: Image forces on screw dislocations in multilayer structures. Scr. Metall. 21, 1587–1592 (1987)CrossRefGoogle Scholar
  12. 12.
    Li, J., Liu, Y., Wen, P.: An edge dislocation interacting with an elastic thin-layered semi-infinite matrix. Math. Mech. Solids 19, 626–639 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Louat, N.: Solution of boundary value problems in plane strain. Nature 196, 1081–1082 (1962)CrossRefGoogle Scholar
  14. 14.
    Marcinkowski, M.J., Das, E.S.P.: The relationship between cracks, holes and surface dislocations. Int. J. Fract. 10, 181–200 (1974)CrossRefGoogle Scholar
  15. 15.
    Gutkin, M.Y., Romanov, A.E.: Straight edge dislocation in a thin two-phase plate I. Elastic stress fields. Physica Status Solidi (a) 125, 107–125 (1991)CrossRefGoogle Scholar
  16. 16.
    Wu, M.S., Wang, H.Y.: Solutions for edge dislocation in anisotropic film-substrate system by the image method. Math. Mech. Solids 12, 183–212 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211, 271–292 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, H.Y., Yu, Y., Yan, S.P.: Elastic stress fields caused by a dislocation in \(\text{ Ge }_{x}\text{ Si }_{1-x}/\text{ Si }\) film-substrate system. Sci. China Phys. Mech. Astron. 57, 1078–1089 (2014)CrossRefGoogle Scholar
  19. 19.
    Lee, M.S., Dundurs, J.: Edge dislocation in a surface layer. Int. J. Eng. Sci. 11, 87–94 (1973)CrossRefGoogle Scholar
  20. 20.
    Wu, K.C., Chid, Y.T.: The elastic fields of a dislocation in an anisotropic strip. Int. J. Solids Struct. 32, 543–552 (1995)CrossRefGoogle Scholar
  21. 21.
    Savage, J.C.: Displacement field for an edge dislocation in a layered half-space. J. Geophys. Res. 103, 2439–2446 (1998)CrossRefGoogle Scholar
  22. 22.
    Han, X., Ghoniem, N.M.: Stress field and interaction forces of dislocations in anisotropic multilayer thin films. Philos. Mag. 85, 1205–1225 (2005)CrossRefGoogle Scholar
  23. 23.
    Weinberger, C.R., Aubry, S., Lee, S.W., et al.: Modelling dislocations in a free-standing thin film. Model. Simul. Mater. Sci. Eng. 17, 075007 (2009)CrossRefGoogle Scholar
  24. 24.
    Tan, E.H., Sun, L.Z.: Dislocation-induced stress field in multilayered heterogeneous thin film system. J. Nanomech. Micromech. 1, 91–103 (2011)CrossRefGoogle Scholar
  25. 25.
    Xia, R., Wu, W., Wu, R.: Elastic field due to dislocation loops in isotropic multilayer system. J. Mater. Sci. 51, 2942–2957 (2016)CrossRefGoogle Scholar
  26. 26.
    Chen, Y.P., Cai, Y.Y., Guo, J.P., et al.: Interfacial elastic fields of a 3D dislocation loop in anisotropic bimaterials of finite thickness crystal films. Mech. Mater. 113, 1–18 (2017)CrossRefGoogle Scholar
  27. 27.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gurtin, M.E., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)CrossRefGoogle Scholar
  29. 29.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)CrossRefGoogle Scholar
  30. 30.
    Copson, E.T.: An Introduction to the Theory of Functions of a Complex Variable. Oxford, London (1935)zbMATHGoogle Scholar
  31. 31.
    Dai, M., Sun, H.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75, 337–344 (2013)CrossRefGoogle Scholar
  32. 32.
    Dai, M., Meng, L.C., Huang, C., Gao, C.F.: Electro-elastic fields around two arbitrarily-shaped holes in a finite electrostrictive solid. Appl. Math. Model. 40, 4625–4639 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Peach, M., Koehler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ruud, J.A., Witvrouw, A., Spaepen, F.: Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys. 74, 2517–2523 (1993)CrossRefGoogle Scholar
  35. 35.
    Josell, D., Bonevich, J.E., Shao, I., Cammarata, R.C.: Measuring the interface stress: silver/nickel interfaces. J. Mater. Res. 14, 4358–4365 (1999)CrossRefGoogle Scholar
  36. 36.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRefGoogle Scholar
  37. 37.
    Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)CrossRefGoogle Scholar
  38. 38.
    Wang, X., Schiavone, P.: A screw dislocation interacting with a bimaterial interface incorporating surface strain gradient elasticity. Eur. J. Mech. A Solids 53, 254–258 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations