Exact solutions of boundary value problems in the theory of plate bending in a half-strip: basics of the theory

  • Mikhail D. Kovalenko
  • Denis A. Abrukov
  • Irina V. MenshovaEmail author
  • Alexander P. Kerzhaev
  • Guangming Yu


Using the boundary value problem on the bending of a thin elastic semi-infinite plate in which the long sides are free, while a self-balanced bending moment and a generalized shearing force are specified at its end as an example, we consider the main steps in constructing exact solutions to the boundary value problems of bending of thin elastic rectangular plates. The solutions are constructed in the form of series in Papkovich–Fadle eigenfunctions. The unknown expansion coefficients are determined in the same way as in classical periodic solutions in trigonometric series and have the same structure, i.e., are expressed via the Fourier integrals of the boundary functions specified at the half-strip end. The systems of functions biorthogonal to the Papkovich–Fadle eigenfunctions constructed here are used in this case. The exact solutions possess properties that are not inherent in any of the known solutions in the theory of plate bending. Some of them are discussed in the paper. The final formulas describing the exact solution of the boundary value problem are simple and can be easily used in engineering practice. The results that we have obtained previously when solving the boundary values problems of the plane theory of elasticity in a rectangular region form the basis for our work.


Half-strip bending Papkovich–Fadle eigenfunctions Exact solutions 

Mathematics Subject Classification




This work was partially supported by the National Natural Science Foundation of China (Grant No. 51674150).


  1. 1.
    Kovalenko, M.D., Shulyakovskaya, T.D.: Expansions in Fadle–Papkovich functions in a strip. Theor. Found. Mech. Solids 46(5), 721–738 (2011)CrossRefGoogle Scholar
  2. 2.
    Kovalenko, M.D., Menshova, I.V., Shulyakovskaya, T.D.: Expansions in Fadle–Papkovich functions: examples of solutions in a half-strip. Mech. Solids 48(5), 584–602 (2013)CrossRefGoogle Scholar
  3. 3.
    Kovalenko, M.D., Menshova, I.V., Kerzhaev, A.P.: On the exact solutions of the biharmonic problem of the theory of elasticity in a half-strip. Z. Angew. Math. Phys. 69, 121 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Meleshko, V.V.: Bending of an elastic rectangular clamped plate: exact versus ‘engineering’ solutions. J. Elast. 48(1), 1–50 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Meleshko, V.V.: Selected topics in the history of two-dimensional biharmonic problem. Appl. Mech. Rev. 56(1), 33–85 (2003)CrossRefGoogle Scholar
  6. 6.
    Hassan, K., Guirguis, S., El-Hamouly, H.: Bending of an elastic rectangular clamped plate using Bergan-Wang approach. Afr. J. Eng. Res. 5(1), 7–17 (2017)Google Scholar
  7. 7.
    Wan, F.Y.M.: Stress boundary conditions for plate bending. Int. J. Solids Struct. 40(16), 4107–4123 (2003)CrossRefGoogle Scholar
  8. 8.
    Li, R., Zhong, Y., Li, M.: Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method. Proc. R. Soc. A 469, 20120681 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhuojia, F., Chen, W.: A truly boundary-only meshfree method applied to Kirchhoff plate bending problems. Adv. Appl. Math. Mech. 1(3), 341–352 (2009)MathSciNetGoogle Scholar
  10. 10.
    Bloor, M.I.G., Wilson, M.J.: An approximate analytic solution method for the biharmonic problem. Proc. R. Soc. A 462, 1107–1121 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Batista, M.: New analytical solution for bending problem of uniformly loaded rectangular plate supported on corner points. IES J. Part A: Civ. Struct. Eng. 3(2), 75–84 (2010)Google Scholar
  12. 12.
    Levin, B.J.A.: Distribution of zeros of entire functions. In: Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence (1980)Google Scholar
  13. 13.
    Leontiev, A.F.: Series of Exponentials. Nauka, Moscow (1976). (in Russian)Google Scholar
  14. 14.
    Korobeinik, Y.F.: Representing systems. Math. USSR-Izv. 12(2), 309–335 (1978)CrossRefGoogle Scholar
  15. 15.
    Pfluger, A.: Über Eine Interpretation Gewisser Konvergenz- und Fortsetzungseigenschaften Dirichletscher Reihen. Comment. Math. Helv. 8(1), 89–129 (1935)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dzhrbashyan, M.M.: Integral Transforms and Representations of Functions in the Complex Domain. Nauka, Moscow (1966). (in Russian)Google Scholar
  17. 17.
    Kerzhaev, A.P., Kovalenko, M.D., Menshova, I.V.: Borel transform in the class W of quasi-entire functions. Complex Anal. Oper. Theor. 12(3), 571–587 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kovalenko, M.D.: The Lagrange expansions and nontrivial representations in terms of homogeneous solutions. Phys. Dokl. 42(2), 90–92 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)zbMATHGoogle Scholar
  20. 20.
    Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRS Press, Boca Raton (2007)Google Scholar
  21. 21.
    James, G., James, R.C.: Mathematics Dictionary. Chapman & Hall, New York (1992)CrossRefGoogle Scholar
  22. 22.
    Thomson, W., Tait, P.: Treatise on Natural Philosophy, Part 2. Cambridge University Press, Cambridge (1883)zbMATHGoogle Scholar
  23. 23.
    Kovalenko, M.D., Menshova, I.V., Kerzhaev, A.P., Yu, G.: Mixed boundary value problems in the theory of elasticity in an infinite strip. Acta Mech. 229(11), 4339–4356 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kovalenko, M.D., Menshova, I.V., Kerzhaev, A.P.: Displacement discontinuity as a result of residual stress relief. In: 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE 2017), pp. 179–183. IEEE, Prague, (2017)Google Scholar
  25. 25.
    Kirchhoff, G.: Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–58 (1850)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Volokh, K.Y.: On the classical theory of plates. J. Appl. Math. Mech. 58(6), 1101–1110 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vasil’ev, V.V.: Kirchhoff and Thomson-Tait transformations in the classical theory of plates. Mech. Solids 47(5), 571–579 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia
  3. 3.Chuvash I. Yakovlev State Pedagogical UniversityCheboksaryRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.School of Civil EngineeringQingdao University of TechnologyQingdaoChina
  6. 6.College of Civil Engineering and Architecture Xinjiang UniversityUrumqiChina
  7. 7.Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic ZoneQingdao University of TechnologyQingdaoChina

Personalised recommendations