Solitary wave solutions to a class of Whitham–Boussinesq systems

  • Dag NilssonEmail author
  • Yuexun Wang


In this note, we study solitary wave solutions of a class of Whitham–Boussinesq systems which include the bidirectional Whitham system as a special example. The travelling wave version of the evolution system can be reduced to a single evolution equation, similar to a class of equations studied by Ehrnström et al. (Nonlinearity 25:2903–2936, 2012). In that paper, the authors prove the existence of solitary wave solutions using a constrained minimization argument adapted to noncoercive functionals, developed by Buffoni (Arch Ration Mech Anal 173:25–68, 2004), Groves and Wahlén (J Math Fluid Mech 13:593–627, 2011), together with the concentration–compactness principle.


Whitham-type equations Dispersive equations Solitary wave 

Mathematics Subject Classification

76B15 76B25 35S30 35A20 



Both authors thank M. Ehrnström and E. Wahlén for suggesting this topic. We would also like to thank the referees for their careful reading, helpful suggestions and valuable comments, which helped us a lot to improve the presentation of this manuscript.


  1. 1.
    Aceves-Sánchez, P., Minzoni, A.A., Panayotaros, P.: Numerical study of a nonlocal model for water-waves with variable depth. Wave Motion 50, 80–93 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bruell, G., Ehrnström, M., Pei, L.: Symmetry and decay of traveling wave solutions to the Whitham equation. J. Differ. Equ. 262, 4232–4254 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buffoni, B.: Existence and conditional energetic stability of capillary–gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173, 25–68 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carter, J.D.: Bidirectional Whitham equations as models of waves on shallow water. Wave Motion 82, 51–61 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Claassen, K.M., Johnson, M.A.: Numerical bifurcation and spectral stability of wavetrains in bidirectional Whitham models. Stud. Appl. Math. 141, 205–246 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dinvay, E.: On well-posedness of a dispersive system of the Whitham–Boussinesq type. Appl. Math. Lett. 88, 13–20 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dinvay, E., Dutykh, D., Kalisch, H.: A comparative study of bi-directional Whitham systems (2018) (submitted for publication) Google Scholar
  8. 8.
    Duchêne, V., Israwi, S., Talhouk, R.: A new class of two-layer Green–Naghdi systems with improved frequency dispersion. Stud. Appl. Math. 137, 356–415 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Duchêne, V., Nilsson, D., Wahlén, E.: Solitary wave solutions to a class of modified Green–Naghdi systems. J. Math. Fluid Mech. 20, 1059–1091 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ehrnström, M., Groves, M.D., Wahlén, E.: On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type. Nonlinearity 25, 2903–2936 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ehrnström, M., Johnson, M.A., Claassen, K.M.: Existence of a highest wave in a fully dispersive two-way shallow water model. Arch. Ration. Mech. Anal. 231, 1635–1673 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ehrnström, M., Kalisch, H.: Traveling waves for the Whitham equation. Differ. Integral Equ. 22, 1193–1210 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ehrnström, M., Pei, L., Wang, Y.: A conditional well-posedness result for the bidirectional Whitham equation (2017). arXiv:1708.04551
  14. 14.
    Ehrnström, M., Wahlén, E.: On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation (2016). arXiv:1602.05384
  15. 15.
    Groves, M.D., Wahlén, E.: On the existence and conditional energetic stability of solitary gravity–capillary surface waves on deep water. J. Math. Fluid Mech. 13, 593–627 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hur, V.M., Tao, L.: Wave breaking in a shallow water model. SIAM J. Math. Anal. 50, 354–380 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kalisch, H., Pilod, D.: On the local well-posedness for a full dispersion Boussinesq system with surface tension (2018). arXiv:1805.04372
  18. 18.
    Klein, C., Linares, F., Pilod, D., Saut, J.-C.: On Whitham and related equations. Stud. Appl. Math. 140, 133–177 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)zbMATHGoogle Scholar
  20. 20.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1, 223–283 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Moldabayev, D., Kalisch, H., Dutykh, D.: The Whitham equation as a model for surface water waves. Phys. D 309, 99–107 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Saut, J.-C., Wang, C., Xu, L.: The Cauchy problem on large time for surface-waves-type Boussinesq systems II. SIAM J. Math. Anal. 49, 2321–2386 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Stefanov, A., Wright, D.: Small amplitude traveling waves in the full-dispersion Whitham equation. arXiv:1802.10040
  24. 24.
    Trillo, S., Klein, M., Clauss, G.F., Onorato, M.: Observation of dispersive shock waves developing from initial depressions in shallow water. Phys. D 333, 276–284 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Whitham, G.B.: Variational methods and applications to water waves. In: Hyperbolic equations and waves (Rencontres, Battelle Res. Inst., Seattle, Wash., 1968), pp. 153–172. Springer, Berlin (1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations