Some new global results to the incompressible Oldroyd-B model

  • Renhui WanEmail author


In this paper, we prove global well-posedness for the incompressible Oldroyd-B model under some general initial conditions by using Littlewood–Paley theory. In particular, we can obtain global well-posedness for the 2D case with large velocity, which is very different from the previous works.


Oldroyd-B model Global results Large data 

Mathematics Subject Classification

42B25 42B35 76A10 76D03 



  1. 1.
    Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1, 2nd edn. Wiley, New York (1987)Google Scholar
  2. 2.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13, 515–541 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chemin, J.-Y., Masmoudi, N.: About the lifespan of the regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, Q., Miao, C.: Global well-posedness of viscoelastic uids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Q., Miao, C., Zhang, Z.: Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Rev. Mat. Iberoam. 26, 915–946 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Q., Miao, C., Zhang, Z.: On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces. Rev. Mat. Iberoam. 31, 1375–1402 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Constantin, P., Kliegl, M.: Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Ration. Mech. Anal. 206, 725–740 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Danchin, R.: Local theory in critical spaces for the compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26(7–8), 1183–1233 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fang, D., Hieber, M., Zi, R.: Global existence results for Oldroyd-B uids in exterior domains: the case of non-small coupling parameters. Math. Ann. 357, 687–709 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fang, D., Zi, R.: Global solution to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48, 1054–1084 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fernandéz-Cara, E., Guillén, F., Ortega, R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Sc. Norm. Super Pisa Cl. 26, 1–29 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gallagher, I., Planchon, F.: On global infinite energy solutions to the Navier–Stokes equations in two dimensions. Arch. Rational Mech. Anal. 161, 307–337 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guillopé, C., Saut, J.C.: Existence results for the ow of viscoelasticuids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hieber, M., Naito, Y., Shibata, Y.: Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252, 2617–2629 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Molinet, L., Talhouk, R.: On the global and periodic regular ows of viscoelastic fluids with a differential constitutive law. NODEA Nonlinear Differ. Equ. Appl. 11, 349–359 (2004)CrossRefGoogle Scholar
  21. 21.
    Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Edinb. Sect. A 245, 278–297 (1958)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zi, R., Fang, D., Zhang, T.: Global solution to the incompressible Oldroyd-B model in the critical \(L^p\) framework: the case of the non-small coupling parameter. Arch. Rational Mech. Anal. 213, 651–687 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematics, School of Mathematical SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations