Advertisement

The Boussinesq system with mixed non-smooth boundary conditions and do-nothing boundary flow

  • Andrea N. Ceretani
  • Carlos N. Rautenberg
Article
  • 25 Downloads

Abstract

A stationary Boussinesq system for an incompressible viscous fluid in a bounded domain with a nontrivial condition at an open boundary is studied. The problem is motivated by modeling energy systems in rooms that possess an outlet where the fluid can freely flow, known as an “open boundary”. Numerical and experimental investigations available from the literature on heated cavities with open boundaries suggest that the heat transfer at the outlet depends on the temperature at the boundary, the velocity of the fluid, and the outside temperature. Aiming to include this feature in the model, we propose a novel non-smooth boundary condition which is deduced from physical assumptions. We show that this condition is compatible with two approaches at dealing with the “do-nothing” boundary condition for the fluid: (1) the “directional do-nothing” condition and (2) the “do-nothing” condition together with an integral bound for the backflow. Well-posedness of variational formulations is proved for each problem.

Keywords

Boussinesq system Mixed boundary conditions Do-nothing boundary condition Weak solutions 

Mathematics Subject Classification

34A34 34B15 76D05 80A20 

Notes

Acknowledgements

The authors would like to thank the two anonymous referees for the helpful comments.

References

  1. 1.
    Adams, R.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Arndt, D., Braack, M., Lube, G.: Finite Elements for the Navier–Stokes problem with outflow condition. Lecture Notes in Computational Science and Engineering, pp. 95–103. Springer, Berlin (2016)zbMATHGoogle Scholar
  3. 3.
    Beneš, M.: A note on regularity and uniqueness of natural convection with effects of viscous dissipation in 3D open channels. Zeitschrift für angewandte Mathematik und Physik 65(5), 961–975 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beneš, M.: A note on the regularity of thermally coupled viscous flows with critical growth in nonsmooth domains. Math. Methods Appl. Sci. 36(10), 1290–1300 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Beneš, M.: The “do nothing” problem for Boussinesq fluids. Appl. Math. Lett. 31, 25–28 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Beneš, M., Kučera, P.: On the Navier–Stokes flows for heat-conducting fluids with mixed boundary conditions. J. Math. Anal. Appl. 389(2), 769–780 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Beneš, M., Kučera, P.: Solutions to the Navier–Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Mathematische Nachrichten 289(2–3), 194–212 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Beneš, M., Pažanin, I.: On existence, regularity and uniqueness of thermally coupled incompressible flows in a system of three dimensional pipes. Nonlinear Anal. Theory Methods Appl. 149, 56–80 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Beneš, M., Tichý, J.: On coupled Navier–Stokes and energy equations in exterior-like domains. Comput. Math. Appl. 70(12), 2867–2882 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bertoglio, C., Caiazzo, A., Bazilevs, Y., Braack, M., Esmaily, M., Gravemeier, V., Marsden, A., Pironneau, O., Vignon-Clementel, I., Wall, W.: Benchmark problems for numerical treatment of backflow at open boundaries. Int. J. Numer. Methods Biomed. Eng. 34(2), 2–34 (2018)MathSciNetGoogle Scholar
  11. 11.
    Boussinesq, J.: Théorie analytique de la Chaleur. Gauthier-Villars, Paris (1903)Google Scholar
  12. 12.
    Braack, M., Mucha, P.: Directional do-nothing condition for the Navier–Stokes equations. J. Comput. Math. 32(5), 507–521 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bruneau, C.H., Fabrie, P.: New efficient boundary conditions for incompressible Navier–Stokes equations: a well posedness result. Math. Model. Numer. Anal. 30(7), 815–840 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Burns, J., He, X., Hu, W.: Feedback stabilization of a thermal fluid system with mixed boundary control. Comput. Math. Appl. 71(11), 2170–2191 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chan, Y.L., Tien, C.L.: A numerical study of two-dimensional natural convection in square open cavities. Numer. Heat Transf. 8(1), 65–80 (1985)zbMATHCrossRefGoogle Scholar
  16. 16.
    Chan, Y.L., Tien, C.L.: Laminar natural convection in shallow open cavities. J. Heat Transf. 108(2), 305–309 (1986)CrossRefGoogle Scholar
  17. 17.
    Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integral Equ. Oper. Theory 15(2), 227–261 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Doktor, P., Ženíšek, A.: The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math. 51(5), 517–547 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Feistauer, M., Neustupa, T.: On non-stationary viscous incompressible flow through a cascade of profiles. Math. Methods Appl. Sci. 29(16), 1907–1941 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Gresho, P.M.: Some current CFD issues relevant to the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 87, 201–252 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Heywood, J.E., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hintermüller, M., Rautenberg, C., Mohammadi, M., Kanitsar, M.: Optimal sensor placement: a robust approach. SIAM J. Control Optim. 55(6), 3609–3639 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Maz’ya, V., Rossmann, J.: Mixed boundary value problems for the stationary Navier–Stokes system in polyhedral domains. Arch. Ration. Mech. Anal. 194(2), 669–712 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hintermüller, M., Rautenberg, C.N.: On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces. J. Math. Anal. Appl. 426(1), 585–593 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hintermüller, M., Rautenberg, C.N., Rösel, S.: Density of convex intersections and applications. Proc. A. 473(2205), 20160919, 28 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hu, W., Kukavica, I., Ziane, M.: Persistence of regularity for the viscous Boussinesq equations with zero diffusivity. Asymptot. Anal. 91(2), 111–124 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Hu, W., Wang, Y., Wu, J., Xiao, B., Yuan, J.: Partially dissipative 2D Boussinesq equations with Navier type boundary conditions. Physica D Nonlinear Phenom. (2017)Google Scholar
  29. 29.
    Kračmar, S., Neustupa, J.: Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities. ZAMM J. Appl. Math. Mech. 74(6), 637–639 (1994)zbMATHGoogle Scholar
  30. 30.
    Kračmar, S., Neustupa, J.: A weak solvability of a steady variational inequality of the Navier–Stokes type with mixed boundary conditions. Nonlinear Anal. 27, 4169–4180 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kračmar, S., Neustupa, J.: Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality. Mathematische Nachrichten 291, 1801–1814 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Kundu, P., Cohen, I.: Fluid Mechanics, 2nd edn. Academic Press, Cambridge (2001)Google Scholar
  33. 33.
    Neustupa, T.: A steady flow through a plane cascade of profiles with an arbitrarily large inflow\_The mathematical model, existence of a weak solution. Appl. Math. Comput. 272, 687–691 (2016)MathSciNetGoogle Scholar
  34. 34.
    Neustupa, T.: The weak solvability of the steady problem modelling the flow of a viscous incompressible heat-conductive fluid through the profile cascade. Int. J. Numer. Methods Heat Fluid Flow 27, 1451–1466 (2017)CrossRefGoogle Scholar
  35. 35.
    Nečas, J.: Direct Methods in the Theory of Elliptic Differential Equations. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  36. 36.
    Nguyen, J., Raymond, J.: Boundary stabilization of the Navier–Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53(5), 3006–3039 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Pérez, C.E., Thomas, J.M., Blancher, S., Creff, R.: The steady Navier–Stokes/energy system with temperature-dependent viscosity–part 1: analysis of the continuous problem. Int. J. Numer. Methods Fluids 56(1), 63–89 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Pérez, C.E., Thomas, J.M., Blancher, S., Creff, R.: The steady Navier–Stokes/energy system with temperature-dependent viscosity—part 2: the discrete problem and numerical experiments. Int. J. Numer. Methods Fluids 56(1), 91–114 (2008)zbMATHCrossRefGoogle Scholar
  39. 39.
    Savaré, G.: Regularity and perturbation results for mixed second order elliptic problems. Commun. Partial Differ. Equ. 22(5–6), 869–899 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Springer, New York (1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. BoronGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsHumboldt-University of BerlinBerlinGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations