Advertisement

Asymptotic behavior of cubic defocusing Schrödinger equations on compact surfaces

  • Marcelo M. Cavalcanti
  • Wellington J. Corrêa
  • Valéria N. Domingos Cavalcanti
  • Maria R. Astudillo Rojas
Article
  • 46 Downloads

Abstract

We are concerned with the asymptotic behavior of two different cubic, defocusing and damped nonlinear Schrödinger equations on compact Riemannian manifolds without boundary. Two mechanisms of locally distributed damping are considered: a weak damping and a stronger one. In the first problem, we consider a two-dimensional case and prove that the corresponding energy functional goes to zero as time goes to infinity. The proof is based on a result of propagation of singularities due to Dehman et al. (Math Z 254(4):729–749, 2006) and Strichartz type inequalities due to Burq et al. (Am J Math 126(3):569–605, 2004), combined with new ingredients which come from the observability inequality associated with the linear problem. When a stronger damping is in place, we show that the energy functional decays exponentially to zero and for this purpose a forced smoothing effect due to Aloui (Collect Math 59(1):53–62, 2008) plays an essential role in the proof.

Mathematics Subject Classification

35B35 35Q55 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their suggestions and fruitful comments.

References

  1. 1.
    Aloui, L., Khenissi, M.: Stabilization of Schrödinger equation in exterior domains. ESAIM Control Optim. Calc. Var. 13, 570–579 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aloui, L., Khenissi, M., Vodev, G.: Smoothing effect for the regularized Schrödinger equation with non-controlled orbits. Commun. Partial Differ. Equ. 38, 265–275 (2013)CrossRefMATHGoogle Scholar
  3. 3.
    Aloui, L.: Stabilisation Neumann pour l’ équation des ondes dans un domaine extérieur. [Neumann stabilization for the wave equation in an exterior domain]. J. Math. Pures Appl. 81, 1113–1134 (2002). (in French)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aloui, L.: Smoothing effect for regularized Schrödinger equation on compact manifolds. Collect. Math. 59(1), 53–62 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beauchard, K., Laurent, C.: Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. (9) 94(5), 520–554 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bortot, C.A., Corrêa, W.J.: Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain. Differ. Integral Equ. 31(3–4), 273–300 (2018)MATHGoogle Scholar
  8. 8.
    Bortot, C.A., Cavalcanti, M.M., Corrêa, W.J., Domingos Cavalcanti, V.N.: Uniform decay rate estimates for Schrödinger and plate equations with nonlinear locally distributed damping. J. Differ. Equ. 254(7), 3729–3764 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Bortot, C.A., Cavalcanti, M.M.: Asymptotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains. Commun. Partial Differ. Equ. 39(9), 1791–1820 (2014)CrossRefMATHGoogle Scholar
  10. 10.
    Brézis, H.: Nonlinear Evolution Equations. Lecture Notes taken by L. COHEN. Autumn Course on Semigroups, Theory and Applications. International Centre for Theoretical Physics. Trieste, Italy (1984)Google Scholar
  11. 11.
    Brézis, H., Cazenave, T.: Nonlinear Evolution Equations. Preliminary Version of Chapters 1, 2 and 3 and the Appendix 658 (1994)Google Scholar
  12. 12.
    Burq, N., Gérard, P., Tzvetkov, N.: Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds. In: Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Mathematics Studies, vol. 163, pp. 111–129. Princeton University Press, Princeton (2007)Google Scholar
  13. 13.
    Burq, N., Gérard, P., Tzvetkov, N.: Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. Math. 159(1), 187–223 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Burq, N., Zworski, M.: Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2), 443–471 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Burq, N., Gérard, P., Tzvetkov, N.: On nonlinear Schrödinger equations in exterior domains. [Equations de Schrödinger non linéaires dans des domaines extérieurs.] Annales de l’Institut Henri Poincaré Anal. Non Linéaire 21, 295–318 (2004)Google Scholar
  16. 16.
    Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Cavalcanti, M.M., Corrêa, W.J., Lasiecka, I., Lefler, C.: Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Indiana Univ. Math. J. 65(5), 1445–1502 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cavalcanti, M.M., Corrêa, W.J., Domingos Cavalcanti, V.N., Tebou, L.: Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation. J. Differ. Equ. 262(3), 2521–2539 (2017)CrossRefMATHGoogle Scholar
  19. 19.
    Cavalcanti, M.M., Cavalcanti, V.N.D., Komornik, V.: Introdução a Análise Funcional. Eduem, Maringá (2011)MATHGoogle Scholar
  20. 20.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result. Arch. Ration. Mech. Anal. 197(3), 925–964 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact surfaces and locally distributed damping—a sharp result. Trans. Am. Math. Soc. 361(9), 4561–4580 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A., Natali, F.: Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization. J. Differ. Equ. 248(12), 2955–2971 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Natali, F.: Exponential stability for the 2-D defocusing Schröinger equation with locally distributed damping. Differ. Integral Equ. 22(7–8), 617–636 (2009)MATHGoogle Scholar
  24. 24.
    Constantin, P., Saut, J.C.: Local smoothing properties of dispersive equation. J. Am. Math. Soc. 1, 413–439 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dehman, B., Gérard, P., Lebeau, G.: Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254(4), 729–749 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. Ec. Norm. Supér. 36, 525–551 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jaffard, S.: Contrôle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47(4), 423–429 (1990)MATHGoogle Scholar
  28. 28.
    Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Laurent, C.: Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal. 42(2), 785–832 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Laurent, C.: Global controllability and stabilization for the nonlinear Schrödinger equation on an interval. ESAIM Control Optim. Calc. Var. 16(2), 356–379 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lasiecka, I., Triggiani, R.: Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control. Differ. Integral Equ. 5(3), 521–535 (1992)MATHGoogle Scholar
  32. 32.
    Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative Schrödinger equations with unobserved Neumann B.C.: global uniqueness and observability in one shot. In: AIFIP international information security conference, Springer, Boston, MA, pp. 235–246 (2003)Google Scholar
  33. 33.
    Lasiecka, I., Triggiani, I.R., Zhang, X.: Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. \(H^1(\Omega )\)-estimates. J. Inverse Ill-Posed Probl. 12(1), 43–123 (2004)MathSciNetMATHGoogle Scholar
  34. 34.
    Lasiecka, I., Triggiani, R., Zhang, X.: Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. \(L2(\Omega )\)-estimates. J. Inverse Ill-Posed Probl. 12(2), 183–231 (2004)MathSciNetMATHGoogle Scholar
  35. 35.
    Lasiecka, I., Triggiani, R.: Well-posedness and sharp uniform decay rates at the L2(?)-level of the Schrödinger equation with nonlinear boundary dissipation. J. Evol. Equ. 6(3), 485–537 (2006)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Lasiecka, I., Triggiani, R., Yao, P.F.: Carleman estimates for a plate equation on a Riemann manifold with energy level terms. In: Analysis and applications—ISAAC 2001, Springer, Boston, MA, pp. 199–236 (2003)Google Scholar
  37. 37.
    Lasiecka, I., Triggiani, R.: Uniform stabilization of a shallow shell model with nonlinear boundary feedback. J. Anal. Appl. 269(2), 642–688 (2002)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Lebeau, G.: Contrôle de l’équation de Schrödinger. (French) [Control of the Schrödinger equation]. J. Math. Pures Appl. (9) 71(3), 267–291 (1992)MathSciNetMATHGoogle Scholar
  39. 39.
    Lions, J.L., Magenes, E.: Magenes, E.: Problémes aux Limites non Homogènes, Aplications. Dunod, Paris (1968)MATHGoogle Scholar
  40. 40.
    Lions, J.L.: Quelques Methódes de Resolution des Probléms aux limites Non Linéaires. Dunod, Gauthier-Villars, Paris (1969)Google Scholar
  41. 41.
    Ozsarı, T.: Well-posedness for nonlinear Schrödinger equations with boundary forces in low dimensions by Strichartz estimates. J. Math. Anal. Appl. 424(1), 487–508 (2015)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Macià, F.: The Schrödinger Flow in a Compact Manifold: High-Frequency Dynamics and Dispersion, Modern Aspects of the Theory of Partial Differential Equations, Operator Theory: Advances and Applications, vol. 216, pp. 275–289. Springer, Basel (2011)Google Scholar
  43. 43.
    Machtyngier, E.: Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32(1), 24–34 (1994)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Machtyngier, E., Zuazua, E.: Stabilization of the Schrödinger equation. Port. Math. 51, 243–256 (1994)MATHGoogle Scholar
  45. 45.
    Miller, L.: Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control Optim. 41(5), 1554–1566 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Natali, F.A.: Exponential stabilization for the nonlinear Schrödinger equation with localized damping. J. Dyn. Control Syst.  https://doi.org/10.1007/s10883-015-9270-y
  47. 47.
    Polthier, K., Schmies, M.: Onderforschungsbereich 288, Differential Geometry and Quantum Physics. http://www-sfb288.math.tu-berlin.de/Research/GEODESICS/Geodesic.html. Accessed 22 Apr 2015
  48. 48.
    Özsarı, T., Kalantarov, V.K., Lasiecka, I.: Irena uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control. J. Differ. Equ. 251(7), 1841–1863 (2011)CrossRefMATHGoogle Scholar
  49. 49.
    Özsarı, T.: Well-posedness for nonlinear Schrödinger equations with boundary forces in low dimensions by Strichartz estimates. J. Math. Anal. Appl. 424(1), 487–508 (2015)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983)CrossRefMATHGoogle Scholar
  51. 51.
    Rauch, J., Taylor, M.: Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)CrossRefMATHGoogle Scholar
  52. 52.
    Rosier, L., Zhang, B.-Y.: Control and stabilization of the nonlinear Schrödinger equation on rectangles. Math. Models Methods Appl. Sci. 20(12), 2293–2347 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Rosier, L., Zhang, B.-Y.: Exact boundary controllability of the nonlinear Schrödinger equation. J. Differ. Equ. 246(10), 4129–4153 (2009)CrossRefMATHGoogle Scholar
  54. 54.
    Rosier, L., Zhang, B.-Y.: Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. 48(2), 972–992 (2009)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equation. AMS, Providence (1997)MATHGoogle Scholar
  56. 56.
    Simon, J.: Compact sets in the space \(L^ p(0, T; B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Triggiani, R.: Exact controllability in \(L^2(\Omega )\) of the Schrödinger equation in a Riemannian manifold with \(L^2(\Sigma_1)\)-Neumann boundary control (invited paper). In: Amann, H., Arendt, W., von Below, J., Hieber, M., Neubrander, F., Nicaise, S. (eds.) Functional Analysis and Evolution Equations. Special Volume Dedicated to the Memory of Günter Lumer, pp. 613–636. Birkhäuser Verlag, Boston (2007)CrossRefGoogle Scholar
  58. 58.
    Triggiani, R., Yao, P.F.: Carleman estimates with no lower-order terms for general Riemannian wave equations. Global uniqueness and observability in one shot. Appl. Math. Optim 46, 331–375 (2002). Special issue dedicated to J. L. LionsMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Triggiani, R., Xiangjin, X.: Pointwise Carleman estimates, global uniqueness, observability, and stabilization for Schrödinger equations on Riemannian manifolds at the \(H^1(\Omega )\)-level. In: Control Methods in PDE-Dynamical Systems. Contemporary Mathematics, vol. 426, pp. 339–404. American Mathematical Society, Providence (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcelo M. Cavalcanti
    • 1
  • Wellington J. Corrêa
    • 2
  • Valéria N. Domingos Cavalcanti
    • 1
  • Maria R. Astudillo Rojas
    • 1
  1. 1.Department of MathematicsState University of MaringáMaringáBrazil
  2. 2.Academic Department of MathematicsFederal Technological University of ParanáCampo MourãoBrazil

Personalised recommendations