Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates


  • 4 Accesses


We study non-standard Verma type modules over the Kac-Moody queer Lie superalgebra 𝔮(n)(2). We give a sufficient condition under which such modules are irreducible. We also give a classification of all irreducible diagonal ℤ-graded modules over certain Heisenberg Lie superalgebras contained in 𝔮(n)(2).

This is a preview of subscription content, log in to check access.


  1. [BBFK13]

    V. Bekkert, G. Benkart, V. Futorny, I. Kashuba, New irreducible modules for Heisenberg and affine Lie algebras, J. Algebra 373 (2013), 284–298.

  2. [CF18]

    L. Calixto, V. Futorny, Highest weight modules for affine Lie superalgebras, arXiv:1804.02563 (2018).

  3. [Cox94]

    B. Cox, Verma modules induced from nonstandard Borel subalgebras, Pacific J. Math. 165 (1994), no. 2, 269–294.

  4. [DFG09]

    I. Dimitrov, V. Futorny, D. Grantcharov, Parabolic sets of roots, in: Groups, Rings and Group Rings, Contemp. Math., Vol. 499, Amer. Math. Soc., Providence, RI, 2009, pp. 61–73.

  5. [ERF09]

    S. Eswara Rao, V. Futorny, Integrable modules for affine Lie superalgebras, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5435–5455.

  6. [Fut94]

    V. Futorny, Imaginary Verma modules for affine Lie algebras, Canad. Math. Bull. 37 (1994), no. 2, 213–218.

  7. [Fut97]

    V. Futorny, Representations of Affine Lie Algebras, Queen’s Papers in Pure and Applied Mathematics, 106. Queen’s University, Kingston, ON, 1997.

  8. [GS08]

    M. Gorelik, V. Serganova, On representations of the affine superalgebra 𝔮(n)(2), Mosc. Math. J. 8 (2008), no. 1, 91–109, 184.

  9. [HS07]

    C. Hoyt, V. Serganova, Classification of finite-growth general Kac-Moody superalgebras, Comm. Algebra 35 (2007), no. 3, 851–874.

  10. [Kac77]

    V. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96.

  11. [Ser11]

    V. Serganova, Kac-Moody superalgebras and integrability, in: Developments and Trends in Infinite-dimensional Lie Theory, Progress in Mathematics, Vol. 288, Birkhäuser Boston, Boston, MA, 2011, pp. 169–218.

  12. [vdL89]

    J. W. van de Leur, A classification of contragredient Lie superalgebras of finite growth, Comm. Algebra 17 (1989), no. 8, 1815–1841.

Download references

Author information

Correspondence to L. CALIXTO.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the CNPq grant (200783/2018-1).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

CALIXTO, L., FUTORNY, V. NON-STANDARD VERMA TYPE MODULES FOR 𝔮(n)(2). Transformation Groups (2020). https://doi.org/10.1007/s00031-020-09550-y

Download citation