• CARLOS H. GROSSIEmail author


We prove, in the case of hyperbolic 3-space, a couple of conjectures raised by J. J. Seidel in On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. 21 (1986), 243–249. Seidel’s first conjecture states that the volume of an ideal tetrahedron in hyperbolic 3-space is determined by (the permanent and the determinant of) a certain Gram matrix G of its vertices; Seidel’s fourth conjecture claims that the mentioned volume is a monotonic function of both the permanent and the determinant of G. A stronger form of the first conjecture is obtained: the permanent and the determinant of G are actually coordinates on the space of all ideal tetrahedra.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [Abr]
    Н. В. Абросимов, Проблема Зейделя об объёме неевклидова тетраэдра, Докл. Акад. Наук. 435 (2010), no. 1, 7–10. Engl. transl.: N. V. Abrosimov, Seidel’s problem on the volume of a non-Euclidean tetrahedron, Dokl. Math. 82 (2010), no. 3, 843–846.Google Scholar
  2. [AGG]
    S. Anan’in, C. H. Grossi, N. Gusevskii, Complex hyperbolic structures on disc bundles over surfaces, Int. Math. Res. Not. IMRN 19 (2011), 4295–4375.MathSciNetzbMATHGoogle Scholar
  3. [AGr1]
    S. Anan’in, C. H. Grossi, Basic coordinate-free non-Euclidean geometry, arXiv: 1107.0346 (2011).Google Scholar
  4. [AGr2]
    S. Anan’in, C. H. Grossi, Coordinate-free classic geometries, Mosc. Math. J. 11 (2011), no. 4, 633–655.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [AGr3]
    S. Anan’in, C. H. Grossi, Differential geometry of grassmannians and Plücker map, Cent. Eur. J. Math. 3 (2012), no. 3, 873–884.CrossRefzbMATHGoogle Scholar
  6. [Ful]
    W. Fulton, J. Harris, Representation Theory: A First Course, Graduate Text in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.Google Scholar
  7. [Huy]
    D. Huybrechts, Complex Geometry: An Introduction, Universitext, Springer-Verlag, New York, 2004.Google Scholar
  8. [LiR]
    D. E. Littlewood, A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. A. 233 (1934), 99–141.CrossRefzbMATHGoogle Scholar
  9. [Mil]
    J. Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. 6 (1982), no. 1, 9–24.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Moh]
    Y. Z. Mohanty, Hyperbolic polyhedra: volume and scissors congruence, PhD Thesis, University of California, San Diego, 2002.Google Scholar
  11. [Sei]
    J. J. Seidel, On the volume of a hyperbolic simplex, Studia Sci. Math. Hungar. 21 (1986), 243–249.MathSciNetzbMATHGoogle Scholar
  12. [VaL]
    J. H. Van Lint, The Van der Waerden conjecture: two proofs in one year, Math. Intelligencer 4 (1982), no. 2, 72–77.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Vin]
    Э. Б. Винберг, Гиперболические группы отражений, УМН 40 (1985), вып. 1(124), 29–66. Engl. transl.: E. B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys 40 (1985), no. 1, 31–75Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsICMC, University of São PauloSão CarlosBrazil

Personalised recommendations