Advertisement

CONFORMAL ACTIONS OF REAL-RANK 1 SIMPLE LIE GROUPS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • V. PECASTAINGEmail author
Article

Abstract

Given a simple Lie group G of rank 1, we consider compact pseudo-Riemannian manifolds (M, g) of signature (p, q) on which G can act conformally, and we determine the smallest possible value for the index min(p, q) of the metric. When the index is optimal and G non-exceptional, we prove that g must be conformally flat, confirming the idea that in a “good" dynamical context, a geometry is determined by its automorphisms group. This completes earlier investigations on pseudo-Riemannian conformal actions of semi-simple Lie groups of maximal real-rank [1, 10, 26]. Combined with these results, we obtain as a corollary the list of semi-simple Lie groups without compact factor that can act conformally on compact Lorentzian manifolds. We also investigate some consequences in CR geometry via the Fefferman fibration.

The author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and Representation Varieties” (the GEAR Network)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. [1]
    U. Bader, A. Nevo, Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, J. Diff. Geom. 60 (2002), no. 3, 355–387.MathSciNetzbMATHGoogle Scholar
  2. [2]
    U. Bader, C. Frances, K. Melnick, An embedding theorem for automorphism groups of Cartan Geometries Geom. Funct. Anal. 19 (2009), no. 2, 333–355.MathSciNetzbMATHGoogle Scholar
  3. [3]
    C. Böhm, M. M. Kerr, Low-dimensional homogeneous Einstein manifolds, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1455–1468.MathSciNetzbMATHGoogle Scholar
  4. [4]
    G. Cairns, É. Ghys, The local linearization problem for smooth SL(n)-actions, Enseign. Math. 43 (1997), no. 2, 133–171.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Čap, A.R. Gover, CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), no. 5, 2519–2570.MathSciNetzbMATHGoogle Scholar
  6. [6]
    J. Ferrand, Transformations conformes et quasi-conformes des variétés rieman-niennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mm. Coll. in-8° (2) 39 (1971), no. 5, 44 pp., MR0322739 (48 #1100).Google Scholar
  7. [7]
    J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), no. 2, 277–291.MathSciNetzbMATHGoogle Scholar
  8. [8]
    C. Frances, Causal conformal vector fields and singularities of twistor spinors, Ann. Global Anal. Geom. 32 (2007), no. 4, 277–295.MathSciNetzbMATHGoogle Scholar
  9. [9]
    C. Frances, Local dynamics of conformal vector fields, Geom. Dedicata 158 (2012), no. 1, 35–59.MathSciNetzbMATHGoogle Scholar
  10. [10]
    C. Frances, A. Zeghib, Some remarks on conformal pseudo-Riemannian actions of semi-simple Lie groups, Math. Res. Lett. 12 (2005), no. 1, 49–56.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Gromov, Rigid transformations groups, in: Géomtrie Différentielle (Paris, 1986), D. Bernard, Y. Choquet-Bruhat, Eds., Hermann, Paris, 1988, pp. 65–139, MR955852 (90d:58173).Google Scholar
  12. [12]
    A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Vol. 140, Birkhäuser, Basel, 2002.Google Scholar
  13. [13]
    N. Kowalski, Non-compact simple automorphism groups of Lorentz manifolds, Ann. of Math. 144 (1996), no. 3, 611–640.MathSciNetGoogle Scholar
  14. [14]
    V. S. Matveev, Proof of projective Lichnerowicz–Obata conjecture, J. Diff. Geom. 75 (2007), no. 3, 459–502.MathSciNetzbMATHGoogle Scholar
  15. [15]
    A. Nevo, R. Zimmer, Invariant rigid geometric structures and smooth projective factors, Geom. Funct. Anal. 19 (2009), no. 2, 520–535.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971), no. 2, 247–258.MathSciNetzbMATHGoogle Scholar
  17. [17]
    V. Pecastaing, Essential conformal actions of PSL(2, R) on real-analytic compact Lorentz manifolds, Geom. Dedicata 188 (2017), no. 1, 171–194.MathSciNetzbMATHGoogle Scholar
  18. [18]
    V. Pecastaing, Lorentzian manifolds with a conformal action of SL(2, R), Comment. Math. Helv. 93 (2018), no. 2, 401–439.MathSciNetzbMATHGoogle Scholar
  19. [19]
    R. Quiroga-Barranco, Isometric actions of simple Lie groups on pseudo-Riemannian manifolds, Ann. of Math. 164 (2006), no. 2, 941–969.MathSciNetzbMATHGoogle Scholar
  20. [20]
    R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), no. 2, 464–481.MathSciNetzbMATHGoogle Scholar
  21. [21]
    M. L. Tomber, Lie algebras of type F, Proc. Amer. Math. Soc. 4 (1953), no. 5, 759–768.MathSciNetzbMATHGoogle Scholar
  22. [22]
    V. S. Varadajan, Spin(7)-subgroups of SO(8) and Spin(8), Expo. Math. 19 (2001), no. 2, 163–177.MathSciNetGoogle Scholar
  23. [23]
    S. M. Webster, On the transformation group of a real hypersurface, Trans. Amer. Math. Soc. 231 (1977), no. 1, 179–190.MathSciNetzbMATHGoogle Scholar
  24. [24]
    A. Zeghib, On affine actions of Lie groups, Math. Z. 227 (1997), no. 2, 245–262.MathSciNetzbMATHGoogle Scholar
  25. [25]
    R. Zimmer, On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83 (1986), no. 3, 411–424.MathSciNetzbMATHGoogle Scholar
  26. [26]
    R. Zimmer, Split rank and semisimple automorphism groups of G-structures, J. Diff. Geom. 26 (1987), no.1, 169–173.MathSciNetzbMATHGoogle Scholar
  27. [27]
    R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, Vol. 81, Birkhäuser, Basel, 1984.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics Research UnitUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations