Advertisement

Correction to: HOMOGENEOUS COMPACT GEOMETRIES

  • L. KRAMER
  • A. LYTCHAKEmail author
Correction
  • 3 Downloads

Notes

References

  1. [1]
    W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353–375.MathSciNetzbMATHGoogle Scholar
  2. [2]
    C. Gorodski, A. Kollross, Some remarks on polar actions, Ann. Global Anal. Geom. 49 (2016), no. 1, 43–58.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157–162.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), no. 1, 95–114.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons II, Geom. Dedicata 83 (2000), no. 1–3, 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Kramer, A. Lytchak, Homogeneous compact geometries, Transform. Groups 19 (2014), no. 3, 793–852.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Podestà, G. Thorbergsson, Polar actions on rank-one symmetric spaces, J. Diff. Geom. 53 (1999), no. 1, 131–175.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Salzmann et al., Compact Projective Planes, de Gruyter Expositions in Mathematics, Vol. 21, de Gruyter, Berlin, 1995.Google Scholar
  9. [9]
    J. Schillewaert, K. Struyve, On exceptional homogeneous compact geometries of type C3, Groups Geom. Dyn. 11 (2017), no. 4, 1377–1399.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    K. Struyve, Free construction of geometries of Coxeter type, arXiv:1505.05475 (2015).Google Scholar
  11. [11]
    A. Pasini, On two non-building but simply connected compact Tits geometries of type C3, Innov. in Incidence Geometry, to appear.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität MünsterMünsterGermany
  2. 2.Mathematisches InstitutUniversität KölnKölnGermany

Personalised recommendations