Transformation Groups

, Volume 24, Issue 1, pp 31–66 | Cite as


  • MAX GLICKEmail author


We consider a discrete dynamical system where the roles of the states and the carrier are played by translations in an affine Weyl group of type A. The Coxeter generators are enriched by parameters, and the interactions with the carrier are realized using Lusztig’s braid move (a, b, c) ↦ (bc/(a+c), a+c, ab/(a+c)). We use wiring diagrams on a cylinder to interpret chamber variables as τ-functions. This allows us to realize our systems as reductions of the Hirota bilinear difference equation and thus obtain N-soliton solutions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991.Google Scholar
  2. 2.
    A. Berenstein, S. Fomin, A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166,.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989.Google Scholar
  5. 5.
    W. Feng, S. Zhao, Generalized Cauchy matrix approach for lattice KP-type equations, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 7, 1652–1664.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, KortewegdeVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan 50 (1981), no. 11, 3785–3791.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Inoue, A. Kuniba, T. Takagi, Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry, arXiv:1109.5349 (2012).Google Scholar
  9. 9.
    A. Kasman, Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs, Student Mathematical Library, Vol. 54, American Mathematical Society, Providence, RI, 2010.Google Scholar
  10. 10.
    С. В. Керов, А. Н. Кириллов, Н. Ю. Решетихин. Комбинаторика, анзац Бете и представления симметрической группы, Зап. научн. сем. ЛОМИ, 155 (1986), 50–64. Engl. transl.: S. V. Kerov, A. N. Kirillov, N. Yu Reshetikhin. Combinatorics, the Bethe ansatz and representations of the symmetric group, J. Soviet Math. 41 (1988), no. 2, 916–924.Google Scholar
  11. 11.
    D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5), 39 (1895), no. 240, 422–443.Google Scholar
  12. 12.
    M. D. Kruskal, N. J. Zabusky, Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations. J. Math. Phys. 5 (1964), 231–244.MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Lam, P. Pylyavskyy, Total positivity in loop groups, I: Whirls and curls, Adv. Math. 230 (2012), no. 3, 1222–1271.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Lam, P. Pylyavskyy, Crystals and total positivity on orientable surfaces, Selecta Math. (N.S.) 19 (2013), no. 1, 173–235.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    T. Lam, P. Pylyavskyy, Total positivity for loop groups II: Chevalley generators, Transform. Groups 18 (2013), no. 1, 179–231.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. B. Lobb, F. W. Nijhoff, G. R. W. Quispel, Lagrangian multiform structure for the lattice KP system, J. Phys. A 42 (2009), no. 47, 472002, 11.Google Scholar
  17. 17.
    G. Lusztig, Total positivity in reductive groups, in: Lie Theory and Geometry, Progr. Math., Vol. 123, Birkhäuser, Boston, MA, 1994, pp. 531–568.Google Scholar
  18. 18.
    T. Miwa, On Hirotas difference equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 1, 9–12.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    F. Nijhoff, Advanced discrete systems and integrability, available online at
  20. 20.
    F. Nijhoff, J. Atkinson, Elliptic N-soliton solutions of ABS lattice equations, Int. Math. Res. Not. IMRN 2010, no. 20, 3837–3895.Google Scholar
  21. 21.
    D. Takahashi, J. Satsuma, A soliton cellular automaton, J. Phys. Soc. Japan 59 (1990), no. 10, 3514–3519.MathSciNetCrossRefGoogle Scholar
  22. 22.
    А. В. Забродин, Разностные уравнения Хироты, ТМФ 113 (1997), no. 2, 179–230. Engl. transl.: A. Zabrodin, A survey of Hirotas difference equations, Theoretical and Math. Physics 113 (1997), no. 2, 1347–1392.Google Scholar
  23. 23.
    S. Zhao, W. Feng, S. Shen, J. Zhang, Generalized Cauchy matrix approach for non-autonomous discrete KadomtsevPetviashvili system, arXiv:1409.4594v1 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.Department of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations