For Weyl groups of classical types, we present formulas to calculate the restriction of Springer representations to a maximal parabolic subgroup of the same type. As a result, we give recursive formulas for Euler characteristics of Springer fibers for classical types. We also give tables of those for exceptional types.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.zbMATHGoogle Scholar
  2. [2]
    C. de Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.Google Scholar
  3. [3]
    M. Ehrig, C. Stroppel, 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math. 68 (2016), no. 6, 1285––1333.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Fresse, Betti numbers of Springer fibers in type A, J. Algebra 322 (2009), 2566 – 2579.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Fresse, A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups 15 (2010), 285 – 331.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. Y. Fung, On the topology of components of some Springer fibers and their relation to KazhdanLusztig theory, Adv. Math. 178 (2003), 244 – 276.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Hotta, T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Hotta, N. Shimomura, The fixed point subvarieties of unipotent transformations on generalized ag varieties and the Green functions: Combinatorial and cohomological treatments centering GL n, Math. Ann. 241 (1979), 193–208.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Khovanov, Crossingless matchings and the cohomology of (n, n) Springer varieties, Commun. Contemp. Math. 6 (2004), 561–577.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F. Lübeck, Tables of Green functions for exceptional groups, available at
  11. [11]
    G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981), 169–178.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Lusztig, Character sheaves, V, Adv. Math. 61 (1986), 103–155.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Lusztig, An induction theorem for Springer’s representations, in: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., Vol. 40, 2004, pp. 253–259.Google Scholar
  14. [14]
    J. S. Milne, Étale Cohomology, Princeton Mathematical Series, Princeton University Press, Princeton, 1980.Google Scholar
  15. [15]
    H. M. Russell, A topological construction for all two-row Springer varieties, Pacific J. Math. 253 (2011), no. 1, 221 – 255.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the ag manifold, J. Math. Soc. Japan 32 (1980), no. 1, 55–64.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Shoji, On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra 7 (1979), no. 16, 1713–1745.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), 239–267.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Spaltenstein, Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Mathematics, Vol. 946, Springer-Verlag Berlin, 1982.Google Scholar
  20. [20]
    T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241–1258.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1986.Google Scholar
  23. [23]
    C. Stroppel, B. Webster, 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv. 87 (2012), no. 2, 477–520.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. A. A. van Leeuwen, A RobinsonSchensted algorithm in the geometry of flags for classical groups, Ph.D. thesis, Rijksuniversiteit te Utrecht, 1989, available at
  25. [25]
    A. Wilbert, Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc. 370 (2018), 2707–2737.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Wilbert, Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory, arXiv:1611.09828 (2016),

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations