Advertisement

Transformation Groups

, Volume 23, Issue 3, pp 755–764 | Cite as

DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE ADMISSIBLE UNIFORMLY BOUNDED BANACH REPRESENTATIONS OF SIMPLE LIE GROUPS

  • G. LIU
  • A. PARTHASARATHY
Article
  • 37 Downloads

Abstract

In this note, we address a question raised by B. Krötz on the classification of G-invariant domains of holomorphy for irreducible admissible Banach representations of connected non-compact simple real linear Lie groups G. When G is not of Hermitian type, we give a complete description of such G-invariant domains for irreducible admissible uniformly bounded representations on reflexive Banach spaces and, in particular, for all irreducible uniformly bounded Hilbert representations. When the group G is Hermitian, we determine such G-invariant domains only when the representations considered are highest or lowest weight representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Akhiezer, S. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    U. Bader, A. Furman, T. Gelander, N. Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), 57–105.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    U. Bader, T. Gelander, Equicontinuous actions of semisimple groups, Groups, Geom. Dyn. 11 (2017), no. 3, 1003–1039.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Bernstein, B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules, Israel J. Math. 199 (2014), 45–111.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.Google Scholar
  6. [6]
    A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud., Vol. 94, Princeton, NJ, 1980.Google Scholar
  7. [7]
    W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math. XLI (1989), no. 3, 385–438.Google Scholar
  8. [8]
    M. Cowling, The Kunze-Stein phenomenon, Ann. of Math. 107 (1978), no. 2, 209–234.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Cowling, Applications of representation theory to harmonic analysis of Lie groups (and vice versa), in: Representation Theory and Complex Analysis, Lecture Notes in Mathematics, Vol. 1931, Springer, Berlin, 2008, pp. 1–50.Google Scholar
  10. [10]
    K. D. Johnson, A strong generalization of Helgason's theorem, Trans. Am. Math. Soc. 304 (1987), no. 1, 171–192.MathSciNetzbMATHGoogle Scholar
  11. [11]
    A. W. Knapp, Lie Groups Beyond An Introduction, 2nd ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston, Boston, MA, 2002.Google Scholar
  12. [12]
    B. Krötz, E.M. Opdam, Analysis on the crown domain, Geom. Funct. Anal. 18 (2008), 1326–1421.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    B. Kostant, \A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem, in: Noncommutative Harmonic Analysis, Progress in Mathematics, Vol. 220, Birkhäuser Boston, Boston, MA, 2004, pp. 291–353.Google Scholar
  14. [14]
    B. Krötz, Domains of holomorphy for irreducible unitary representations of simple Lie groups, Invent. Math. 172 (2008), 277–288.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Krötz and R.J. Stanton, Holomorphic extensions of representations: (I) automorphic functions, Ann. of Math. 159 (2004), 641–724.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    B. Krötz, R. J. Stanton, Holomorphic extensions of representations. (II). Geometry and harmonic analysis, Geom. Funct. Anal. 15 (2005), 190–245.Google Scholar
  17. [17]
    E. P. van den Ban, H. Schlichtkrull, Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108–165.MathSciNetzbMATHGoogle Scholar
  18. [18]
    N. R. Wallach, Real Reductive Groups. II, Pure and Applied Mathematics, Vol. 132-II, Academic Press, Boston, MA, 1992.Google Scholar
  19. [19]
    G. Warner, Harmonic Analysis On Semi-simple Lie Groups, Vol. I, Springer-Verlag, Berlin, 1972.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut Élie Cartan de LorraineUniversité de LorraineMetz Cedex 03France
  2. 2.Institut für MathematikUniversität PaderbornPaderbornGermany

Personalised recommendations