Transformation Groups

, Volume 23, Issue 3, pp 841–874 | Cite as


  • CHARLES PAQUETTEEmail author


In this paper, we study the isotropic Schur roots of an acyclic quiver Q with n vertices. We study the perpendicular category \( \mathcal{A}(d) \) of a dimension vector d and give a complete description of it when d is an isotropic Schur δ. This is done by using exceptional sequences and by defining a subcategory ℛ(Q, δ) attached to the pair (Q, δ). The latter category is always equivalent to the category of representations of a connected acyclic quiver Q of tame type, having a unique isotropic Schur root, say δ . The understanding of the simple objects in \( \mathcal{A}\left(\delta \right) \) allows us to get a finite set of generators for the ring of semiinvariants SI(Q, δ) of Q of dimension vector δ. The relations among these generators come from the representation theory of the category ℛ(Q, δ) and from a beautiful description of the cone of dimension vectors of \( \mathcal{A}\left(\delta \right) \). Indeed, we show that SI(Q, δ) is isomorphic to the ring of semi-invariants SI(Q , δ ) to which we adjoin variables. In particular, using a result of Skowroński and Weyman, the ring SI(Q, δ) is a polynomial ring or a hypersurface. Finally, we provide an algorithm for finding all isotropic Schur roots of Q. This is done by an action of the braid group B n − 1 on some exceptional sequences. This action admits finitely many orbits, each such orbit corresponding to an isotropic Schur root of a tame full subquiver of Q.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Baer, A note on wild quiver algebras and tilting modules, Comm. Algebra 77 (1989), 751–757.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Bürgin, J. Draisma, The Hilbert null-cone on tuples of matrices and bilinear forms, Math. Z. 254 (2006), 785–809.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Chindris, Cluster fans, stability conditions, and domains of semi-invariants, Trans. AMS 363 (2011), no. 4, 2171–2190.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    W. Crawley-Boevey, Exceptional sequences of representations of quivers, in: Representations of Algebras (Ottawa, ON, 1992), CMS Conf. Proceedings, Vol. 14, Amer. Math. Soc., Providence, RI, 1993, pp. 117–124.Google Scholar
  5. [5]
    H. Derksen, J. Weyman, On the canonical decomposition of quiver representations, Compositio Math. 133 (2002), no. 3, 245–265.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Derksen, J. Weyman, The combinatorics of quiver representations, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 1061–1131.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Derksen, J. Weyman, Semi-invariants of quivers and saturation for LittlewoodRichardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Fei, Cluster algebras and semi-invariants rings I. Triple ags, Proc. London Math. Soc. 115 (2017), 1–32.MathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    W. Geigle, H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Happel, S. Hartlieb, O. Kerner, L. Unger, On perpendicular categories of stones over quiver algebras, Comment. Math. Helvetici 71 (1996), 463 – 474.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Igusa, K. Orr, G. Todorov and J.Weyman, Cluster complexes via semi-invariants, Compositio Math. 145 (2009), 1001-1034.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Ingalls, C. Paquette, H. Thomas, Semi-stable subcategories for Euclidean quivers, Proc. London Math. Soc. 110 (2015), no. 4, 805–840.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57–92.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), no. 1, 141–162.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530.Google Scholar
  17. [17]
    C. Paquette, Accumulation points of real Schur roots, J. Algebra 464 (2016), 316–347.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. A. de la Peña, Coxeter transformations and the representation theory of algebras, in: Finitedimensional Algebras and Related Topics (Ottawa, ON, 1992), Kluwer Acad. Publ., Dordrecht, 1994, pp. 223–253.Google Scholar
  19. [19]
    A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), no. 1, 46–64.Google Scholar
  20. [20]
    A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 383–395.MathSciNetzbMATHGoogle Scholar
  21. [21]
    A. Schofield, M. van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, Indag. Mathem. 12 (2001), no. 1, 125 – 138.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Skowroński, J. Weyman, Semi-invariants of quivers, Transform. Groups 5 (2000), 361-402.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), no. 1, 43–66.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations