Stochastic vorticity equation in \(\mathbb R^2\) with not regular noise

  • Benedetta Ferrario
  • Margherita ZanellaEmail author


We consider the Navier–Stokes equations in vorticity form in \(\mathbb {R}^2\) with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in \(L^q\) spaces, \(1<q<\infty \). We prove the existence of a unique strong (in the probability sense) solution.


Stochastic vorticity equation \(\gamma \)-Radonifying operators Strong solution 

Mathematics Subject Classification

60H15 76D05 76M35 



This research was partially supported by INDAM-GNAMPA, PRIN 2015 “Determistic and stochastic evolution equations” and the Italian Ministry of Education, University and Research (MIUR) “Dipartimenti di Eccellenza Program” (2018–2022)—Dept. of Mathematics “F.Casorati”, University of Pavia.


  1. 1.
    Albeverio, S., Flandoli, F., Sinai, Y.G.: SPDE in Hydrodynamics: Recent Progress and Prospects, Vol. 1942 of Lecture Notes in Mathematics. In: Da Prato, G., Röckner, M. (eds.) Fondazione C.I.M.E., Florence, 2008. Lectures Given at the C.I.M.E. Summer School Held in Cetraro, August 29–September 3, 2005, Springer, BerlinGoogle Scholar
  2. 2.
    Baxendale, P.: Gaussian measures on function spaces. Am. J. Math. 98, 891–952 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)Google Scholar
  4. 4.
    Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  5. 5.
    Brzeźniak, Z., van Neerven, J.: Space–time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43, 261–303 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brzeźniak, Z., Ferrario, B.: A note on stochastic Navier–Stokes equations with not regular multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 5, 53–80 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brzeźniak, Z., Motyl, E.: Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains. J. Differ. Equ. 254, 1627–1685 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brzeźniak, Z., Peszat, S.: Stochastic two dimensional Euler equations. Ann. Probab. 29, 1796–1832 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Capiński, M., Peszat, S.: On the existence of a solution to stochastic Navier–Stokes equations. Nonlinear Anal. 44, 141–177 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dettweiler, E.: Stochastic integration relative to Brownian motion on a general Banach space. Douga Mat. 15, 58–97 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ferrario, B., Zanella, M.: Absolute continuity of the law for the two dimensional stochastic Navier–Stokes equations. Stoch. Process. Appl. (2018).
  12. 12.
    Holly, K., Wiciak, M.: Compactness method applied to an abstract nonlinear parabolic equation. In: Selected Problems of Mathematics, vol. 6 of 50th Anniversary Cracow University of Technology, Cracow University of Technology, Kraków, pp. 95–160 (1995)Google Scholar
  13. 13.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, vol. 24, 2nd edn. North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam (1989)zbMATHGoogle Scholar
  14. 14.
    Jakubowski, A.: On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Stat. 22, 263–285 (1986)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42, 209–216 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kato, T., Ponce, G.: Well-posedness of the Euler and Navier–Stokes equations in the Lebesgue spaces \(L^p_s({ R}^2)\). Rev. Mat. Iberoam. 2, 73–88 (1986)CrossRefGoogle Scholar
  17. 17.
    Kuksin, S.B.: Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions Zürich, Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2006)CrossRefGoogle Scholar
  18. 18.
    Kuo, H.H.: Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)CrossRefGoogle Scholar
  19. 19.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, vol. 27. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  20. 20.
    Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal. 35, 1250–1310 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mikulevicius, R., Rozovskii, B.L.: Global \(L_2\)-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33, 137–176 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Neidhardt, A.: Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D. thesis, University of Wisconsin (1978)Google Scholar
  23. 23.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefGoogle Scholar
  24. 24.
    Schmalfuss, B.: Qualitative properties for the stochastic Navier–Stokes equation. Nonlinear Anal. 28, 1545–1563 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 343. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  26. 26.
    van Neerven, J.: \(\gamma \)-radonifying operators: a survey. In: The AMSI–ANU Workshop on Spectral Theory and Harmonic Analysis, vol. 44, pp. 1–61 (2010)Google Scholar
  27. 27.
    van Neerven, J., Veraar, M., Weis, L.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35, 1438–1478 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics, vol. 9 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly
  2. 2.Dipartimento di Economia e FinanzaLibera Università degli Studi Sociali “G. Carli”RomeItaly

Personalised recommendations