Advertisement

Lipschitz regularity for viscosity solutions to parabolic \({\varvec{p(x,t)}}\)-Laplacian equations on Riemannian manifolds

  • Soojung Kim
Article
  • 61 Downloads

Abstract

We study viscosity solutions to parabolic p(xt)-Laplacian equations on Riemannian manifolds under the assumption that a continuous exponent function p is Lipschitz continuous with respect to spatial variables, and satisfies \( 1< p_- \le p(x,t)\le p_+<\infty \) for some constants \(1<p_-\le p_+ <\infty \). Using Ishii–Lions’ method, a Lipschitz estimate of viscosity solutions is established on Riemannian manifolds with sectional curvature bounded from below.

Keywords

\(p(x, t)\)-Laplacian operator Lipschitz regularity Viscosity solutions Riemannian manifold 

Mathematics Subject Classification

35K92 58J35 35D40 35B65 

References

  1. 1.
    Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluid. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 25–60 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355–399 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions. Atlantis Press, Paris (2015)CrossRefzbMATHGoogle Scholar
  5. 5.
    Antontsev, S., Zhikov, V.V.: Higher integrability for parabolic equations of \(p(x, t)\)-Laplacian type. Adv. Differ. Equ. 10(9), 1053–1080 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Azagra, D., Ferrera, J., Sanz, B.: Viscosity solutions to second order partial differential equations on Riemannian manifolds. J. Differ. Equ. 245, 307–336 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Azagra, D., Jimenez-Sevilla, M., Macia, F.: Generalized motion of level sets by functions of their curvatures on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 33, 133–167 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barles, G., Biton, S., Ley, O.: A geometrical approach to the study of unbounded solutions of quasilinear parabolic equation. Arch. Ration. Mech. Anal. 162, 287–325 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baroni, P., Bögelein, V.: Calderón–Zygmund estimates for parabolic \( p (x, t) \)-Laplacian systems. Revista Mat. Iberoam. 30(4), 1355–1386 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32(2), 484–500 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Birindelli, I., Demengel, F.: The Dirichlet problem for singular fully nonlinear operators. Discret. Contin. Dynam Syst. Suppl. 110–121 (2007)Google Scholar
  12. 12.
    Birindelli, I., Demengel, F.: Eigenfunctions for singular fully nonlinear equations in unbounded domains. Nonlinear Differ. Equ. Appl. 17(6), 697–714 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Birindelli, I., Demengel, F.: \(C^{1,\beta }\) regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM COCV. 20(40), 1019–1024 (2014)zbMATHGoogle Scholar
  14. 14.
    Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard growth and degenerate diffusions. Publ. Mat. 55(1), 201–250 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bögelein, V., Duzaar, F.: Hölder estimates for parabolic \(p(x, t)\)-Laplacian system. Math. Ann. 354(3), 907–938 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cabré, X.: Nondivergent elliptic equations on manifolds with nonnegative curvature. Commun. Pure Appl. Math. 50, 623–665 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)zbMATHGoogle Scholar
  18. 18.
    Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, Y., Xu, M.: Hölder continuity of weak solutions for parabolic equations with nonstandard growth conditions. Acta Math. Sin. (Engl. Ser.) 22(3), 793–806 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dávila, G., Felmer, P., Quaas, A.: Harnack inequality for singular fully nonlinear operators and some existence results. Calc. Var. Partial Differ. Equ. 39(3–4), 557–578 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Demengel, F.: Existence results for parabolic problems related to fully non linear operators degenerate or singular. Potential Anal. 35(1), 1–38 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Diehl, J., Friz, P.K., Oberhauser, H.: Regularity theory for rough partial differential equations and parabolic comparison revisited. In: Stochastic Analysis and Applications, vol. 2014, pp. 203–238. Springer (2014)Google Scholar
  25. 25.
    Duzaar, F., Habermann, J.: Partial regularity for parabolic systems with non standard growth. J. Evol. Equ. 12(1), 203–244 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. 214(1005), 128 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Evans, C., Spruck, J.: Motion of level sets by mean curvature. J Differ. Geom. 33, 635–681 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Imbert, C., Silvestre, L.: \(C^{1,\alpha }\) regularity of solutions of degenerate fully nonlinear elliptic equations. Adv. Math. 233, 196–206 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Imbert, C., Silvestre, L.: Estimates on elliptic equations that hold only where the gradient is large. J. Eur. Math. Soc. 18, 1321–1338 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Imbert, C., Jin, T., Silvestre, L.: Hölder gradient estimates for a class of singular or degenerate parabolic equations. arXiv preprint arXiv:1610.04987
  31. 31.
    Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second order elliptic partial differential equations. J. Differ. Equ. 83(1), 26–78 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ishii, H., Souganidis, P.: Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J. 47, 227–250 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jensen, R., Lions, P.-L., Souganidis, P.E.: A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations. Proc. Am. Math. Soc. 102, 975–978 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Jin, T., Silvestre, L.: Hölder gradient estimates for parabolic homogeneous p-Laplacian equations. J. Math. Pures Appl. 108, 63–87 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Juutinen, P.: On the definition of viscosity solutions for parabolic equations. Proc. Am. Math. Soc. 129, 2907–2911 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Juutinen, P., Kawhol, B.: On the evolution governed by the infinity Laplacian. Math. Ann. 335, 819–851 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kim, S., Kim, S., Lee, K.-A.: Harnack inequality for nondivergent parabolic operators on Riemannian manifolds. Calc. Var. 49, 669–706 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kim, S., Lee, K.-A.: Parabolic Harnack inequality of viscosity solutions on Riemannian manifolds. J. Funct. Anal. 267, 2152–2198 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kim, S.: Harnack inequality for degenerate and singular operators of \(p\)-Laplacian type on Riemannian manifolds. Math. Ann. 366, 1721–1785 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ohnuma, M., Sato, K.: Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation. Commun. Partial Differ. Equ. 22(3–4), 381–411 (1997)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Rajagopal, K., Růžička, M.: Mathematical modelling of electro-rheological fluids. Cont. Mech. Therm. 13, 59–78 (2001)CrossRefzbMATHGoogle Scholar
  43. 43.
    Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. Springer, Berlin (2000)Google Scholar
  44. 44.
    Winkert, P., Zacher, R.: Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth. Nonlinear Anal. 145, 1–23 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yao, F.: Hölder regularity for the general parabolic \(p (x, t)\)-Laplacian equations. NoDEA Nonlinear Differ. Equ. Appl. 22(1), 105–119 (2015)CrossRefzbMATHGoogle Scholar
  46. 46.
    Zhikov, V.V., Pastukhova, S.E.: On the property of higher integrability for parabolic systems of variable order of nonlinearity. Mat. Zametki 87(2), 179–200 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations