Liouville-type theorems for a quasilinear elliptic equation of the Hénon-type

  • Quoc Hung PhanEmail author
  • Anh Tuan Duong


We consider the Hénon-type quasilinear elliptic equation \({-\Delta_m u=|x|^a u^p}\) where \({\Delta_m u={\rm div}(|\nabla u|^{m-2} \nabla u)}\), m > 1, p > m − 1 and \({a\geq 0}\). We are concerned with the Liouville property, i.e. the nonexistence of positive solutions in the whole space \({{\mathbb R}^N}\). We prove the optimal Liouville-type theorem for dimension N < m + 1 and give partial results for higher dimensions.


Quasilinear Liouville-type theorem Hénon-typeequation 

Mathematics Subject Classification

Primary 35B53 35J62 Secondary 35K57 35B33 


  1. 1.
    Bidaut-Véron M.F., García-Huidobro M.: Regular and singular solutions of a quasilinear equation with weights. Asymptot. Anal. 28(2), 115–150 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Byeon J., Wang Z.-Q.: On the H énon equation: asymptotic profile of ground states. II. J. Differ. Equ. 216(1), 78–108 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Byeon J., Wang Z.-Q.: On the H énon equation: asymptotic profile of ground states. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 803–828 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao D., Peng S., Yan S.: Asymptotic behaviour of ground state solutions for the H énon equation. IMA J. Appl. Math. 74(3), 468–480 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Carrião P.C., de Figueiredo D.G., Miyagaki O.H.: Quasilinear elliptic equations of the Henon-type: existence of non-radial solutions. Commun. Contemp. Math. 11(5), 783–798 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cauchy A.: Mémoires sur les fonctions complémentaires. C. R. Acad. Sci. Paris 19, 1377–1384 (1844)Google Scholar
  7. 7.
    Clément P., de Figueiredo D.G., Mitidieri E.: Quasilinear elliptic equations with critical exponents. Topol. Methods Nonlinear Anal. 7(1), 133–170 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    DiBenedetto E.: \({C^{1+\alpha}}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gidas B., Spruck J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Guedda M., Véron L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13(8), 879–902 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hashimoto, T.: Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. In: Proceedings of 7th AIMS Conference on Dynamical Systems, Differential Equations and Applications. Discrete Contin. Dyn. Syst. Suppl., pp. 349–358 (2009)Google Scholar
  12. 12.
    Hénon M.: Numerical experiments on the stability of spherical stellar systems. Astronom. Astrophys. 24, 229–238 (1973)Google Scholar
  13. 13.
    Il’yasov Y.Sh., Takáč P.: Optimal \({W^{2,2}_{\rm loc}}\)-regularity, Pohozhaev’s identity, and nonexistence of weak solutions to some quasilinear elliptic equations. J. Differ. Equ. 252(3), 2792–2822 (2012)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kawano N., Ni W.-M., Yotsutani S.: A generalized Pohozaev identity and its applications. J. Math. Soc. Jpn. 42(3), 541–564 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Liouville, J.: Remarques de M. Liouville sur “Construction géométrique des amplitudes dans les fonctions elliptiques” par M. Charles. C. R. Acad. Sci. Paris 19, 1261–1263 (1844)Google Scholar
  16. 16.
    Mitidieri E., Pohozaev S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234, 1–384 (2001)MathSciNetGoogle Scholar
  17. 17.
    Ni W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31(6), 801–807 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ôtani M.: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76(1), 140–159 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Phan Q.H., Souplet P.: Liouville-type theorems and bounds of solutions of Hardy–H énon equations. J. Differ. Equ. 252(3), 2544–2562 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Poláčik P., Quittner P., Souplet P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Pucci, P., García-Huidobro, M., Manásevich, R., Serrin, J.: Qualitative properties of ground states for singular elliptic equations with weights. Ann. Mat. Pura Appl. (4) 185(suppl.), S205–S243 (2006)Google Scholar
  22. 22.
    Pucci P., Servadei R.: Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 505–537 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Serra E.: Non radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Differ. Equ. 23(3), 301–326 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Serrin J., Zou H.: Non-existence of positive solutions of Lane–Emden systems. Differ. Integral Equ. 9(4), 635–653 (1996)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Serrin J., Zou H.: Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189(1), 79–142 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Smets D., Willem M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differ. Equ. 18(1), 57–75 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Smets D., Willem M., Su J.: Non-radial ground states for the H énon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Souplet P.: The proof of the Lane–Emden conjecture in four space dimensions. Adv. Math. 221(5), 1409–1427 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Department of MathematicsHanoi National University of EducationCau Giay DistrictVietnam

Personalised recommendations