Dispersive and diffusive limits for Ostrovsky–Hunter type equations

  • Giuseppe Maria CocliteEmail author
  • Lorenzo di Ruvo


We consider the equation
$$\partial _{x}(\partial_{t} u+\partial_{x} f(u)-\beta \partial_{xxx}^{3} u)=\gamma u,$$
that includes the short pulse, the Ostrovsky–Hunter, and the Korteweg–deVries ones. We consider here the asymptotic behavior as \({\gamma\to 0}\) . The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L p setting.

Mathematics Subject Classification

35G25 35L65 35L05 


Singular limit Compensated compactness Ostrovsky–Hunter equation Entropy condition 


  1. 1.
    Brunelli J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Coclite, G.M., di Ruvo, L.: Wellposedness of bounded solutions of the non-homogeneous initial boundary value problem for the Ostrovsky–Hunter equation. J. Hyperbolic Differ. Equ. 12, 221–248 (2015)Google Scholar
  3. 3.
    Coclite, G.M.; di Ruvo, L.: Wellposedness results for the short pulse equation. Z. Angew. Math. Phys. (2014) (To appear on)Google Scholar
  4. 4.
    Coclite G.M., di Ruvo L.: Oleinik type estimates for the Ostrovsky–Hunter equation. J. Math. Anal. Appl. 423, 162–190 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Coclite G.M., Ruvo L.: Convergence of the Ostrovsky equation to the Ostrovsky–Hunter one. J. Differ. Equations 256, 3245–3277 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Coclite, G.M., di Ruvo, L.: Convergence of the regularized short pulse equation to the short pulse one. (Submitted)Google Scholar
  7. 7.
    Coclite, G.M., di Ruvo, L., Karlsen, K.H.: Some wellposedness results for the Ostrovsky–Hunter equation. In: Hyperbolic Conservation Laws and Related Analysis with Applications, 143–159. Springer Proc. Math. Stat., vol. 49. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Costanzino N., Manukian V., Jones C.K.R.T.: Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal 41, 2088–2106 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    di Ruvo, L.: Discontinuous solutions for the Ostrovsky–Hunter equation and two phase flows. Phd Thesis, University of Bari (2013).
  10. 10.
    Gui G., Liu Y.: On the Cauchy problem for the Ostrovsky equation with positive dispersion. Commun. Partial Differ. Equ. 32(10–12), 1895–1916 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Grimshaw R.H.J.: Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation. Three-dimensional aspects of air–sea interaction. Eur. J. Mech. B Fluids 18(3), 535–543 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hunter, J.: Numerical solutions of some nonlinear dispersive wave equations. In: Computational Solution of Nonlinear Systems of Equations (Fort Collins, CO, 1988) Lectures in Appl. Math., vol. 26, pp. 301–316. Amer. Math. Soc., Providence (1990)Google Scholar
  13. 13.
    Hunter, J., Tan, K.P.: Weakly dispersive short waves. In: Proceedings of the IVth International Congress on Waves and Stability in Continuous Media, Sicily (1987)Google Scholar
  14. 14.
    LeFloch, P.G., Natalini, R.: Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. Ser. A Theory Methods 36(2), 212–230 (1992)Google Scholar
  15. 15.
    Levandosky S., Liu Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal. 38(3), 985–1011 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Levandosky S., Liu Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dyn. Syst. B 7(7), 793–806 (2007)MathSciNetGoogle Scholar
  17. 17.
    Linares F., Milanes A.: Local and global well-posedness for the Ostrovsky equation. J. Differ. Equ. 222(2), 325–340 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu Y.: On the stability of solitary waves for the Ostrovsky equation. Q. Appl. Math. 65(3), 571–589 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Liu Y., Pelinovsky D., Sakovich A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu Y., Varlamov V.: Cauchy problem for the Ostrovsky equation. Discrete Contin. Dyn. Syst. 10(3), 731–753 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu Y., Varlamov V.: Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 203(1), 159–183 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Morrison A.J., Parkes E.J., Vakhnenko V.O.: The N loop soliton solutions of the Vakhnenko equation. Nonlinearity 12(5), 1427–1437 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Murat F.: L’injection du cône positif de H −1 dans W −1, q est compacte pour tout q < 2. J. Math. Pures Appl. (9) 60(3), 309–322 (1981)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Ostrovsky L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181–191 (1978)Google Scholar
  25. 25.
    Parkes E.J.: Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals 31(3), 602–610 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Parkes E.J., Vakhnenko V.O.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Sakovich A., Sakovich S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239–241 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Schäfer T., Wayne C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Schonbek M.E.: Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7(8), 959–1000 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Stepanyants Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, pp. 136–212. Pitman, Boston (1979)Google Scholar
  32. 32.
    Tsugawa K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 247(12), 3163–3180 (2009)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BariBariItaly

Personalised recommendations