Advertisement

Stability tests for second order linear and nonlinear delayed models

  • Leonid Berezansky
  • Elena Braverman
  • Lev IdelsEmail author
Article

Abstract

For the nonlinear second order Lienard-type equations with time-varying delays
$$\ddot{x}(t)+\sum_{k=1}^m f_k(t,x(t),\dot{x}(g_k(t)))+\sum_{k=1}^ls_k(t,x(h_k(t)))=0,$$
global asymptotic stability conditions are obtained. The results are based on the new sufficient stability conditions for relevant linear equations and are applied to derive explicit stability conditions for the nonlinear Kaldor–Kalecki business cycle model. We also explore multistability of the sunflower non-autonomous equation and its modifications.

Mathematics Subject Classification

34K20 92D25 34K45 34K12 34K25 

Keywords

Second order delay differential equations Global asymptotic stability Boundedness of solutions Lienard-type nonautonomous linear and nonlinear delay differential equations Sunflower equation The Kaldor–Kalecki business cycle model Variable delays 

References

  1. 1.
    Agarwal R.P., Berezansky L., Braverman E., Domoshnitsky A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)zbMATHCrossRefGoogle Scholar
  2. 2.
    Berezansky L., Diblik J., Smarda Z.: Positive solutions of second-order delay differential equations with a damping term. Comput. Math. Appl. 60, 1332–1342 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Berezansky L., Braverman E., Domoshnitsky A.: Stability of the second order delay differential equations with a damping term. Differ. Equ. Dyn. Syst. 16, 185–205 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Berezansky L., Braverman E.: On stability of some linear and nonlinear delay differential equations. J. Math. Anal. Appl. 314, 391–411 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Berezansky L., Braverman E., Idels L.: New global exponential stability criteria for nonlinear delay differential systems with applications to BAM neural networks. Appl. Math. Comput. 243, 899–910 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burton T.A.: Second order boundedness criteria. Ann. Mat. Pura Appl. 107(4), 383–393 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Burton T.A., Zhang B.: Boundedness, periodicity, and convergence of solutions in a retarded Lienard equation. Ann. Mat. Pura Appl. 165(4), 351–368 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Burton T.A.: Fixed points, stability, and exact linearization. Nonlinear Anal. 61, 857–870 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, Inc., Mineola (2006)Google Scholar
  10. 10.
    Cahlon B., Schmidt D.: Stability criteria for certain second-order delay differential equations with mixed coefficients. J. Comput. Appl. Math. 170, 79–102 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cahlon B.: Unconditional stability for certain delay differential equations. Dyn. Syst. Appl. 5(4), 583–594 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Casal A., Somolinos A.: Forced oscillations for the sunflower equation, entrainment. Nonlinear Anal. Theory Methods Appl. 6, 397–414 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dombovari Z., Barton D., Wilson R., Stepan G.: On the global dynamics of chatter in the orthogonal cutting model. Int. J. Non-Linear Mech. 46, 330–338 (2011)CrossRefGoogle Scholar
  14. 14.
    Gabish, G., Lorenz, H.: Business Cycle Theory: A Survey of Methods and Concepts. In: Lecture Notes in Economics and Mathematics, vol. 283, Springer, Germany (1987)Google Scholar
  15. 15.
    Gyori I., Hartung F.: Asymptotically exponential solutions in nonlinear integral and differential equations. J. Differ. Equ. 249, 1322–1352 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hale, J., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. In: Applied Mathematical Sciences, vol. 99. Springer, New York (1993)Google Scholar
  17. 17.
    Israelson D., Johnson A.: A theory of circumnutations of Helianthus annuus. Physiol. Plants 20, 957–976 (1967)CrossRefGoogle Scholar
  18. 18.
    Kolmanovskii, V., Myshkis, A.: Applied theory of functional-differential equations. In: Mathematics and its Applications (Soviet Series), vol. 85. Kluwer Academic Publishers Group, Dordrecht (1992)Google Scholar
  19. 19.
    Kim P., Jung J., Lee S., Seok J.: Stability and bifurcation analyses of chatter vibrations in a nonlinear cylindrical traverse grinding process. J. Sound Vib. 332, 3879–3896 (2013)CrossRefGoogle Scholar
  20. 20.
    Liu L., Kalmár-Nagy T.: High-dimensional harmonic balance analysis for second-order delay-differential equations. J. Vib. Control 16, 1189–1208 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu B., Huang L.: Boundedness of solutions for a class of Lienard equations with a deviating argument. Appl. Math. Lett. 21, 109–112 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Liz E., Trofimchuk S.: Existence and stability of almost periodic solutions for quasilinear delay systems and the Halanay inequality. J. Math. Anal. Appl. 248, 625–644 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Long, W.; Zhang, H.-X.: Boundedness of solutions to a retarded Lienard equation. Electron. J. Qual. Theory Differ. Equ. 24, 1–9 (2010)Google Scholar
  24. 24.
    Lizana M.: Global analysis of the sunflower equation with small delay. Nonlinear Anal. Theory Methods Appl. 36, 697–706 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Mawhin, J.: Seventy-five years of global analysis around the forced pendulum equation. In: Proceedings of the Equadiff 9 Conference on Differential Equations and Their Applications, Brno, Czech Republic, 25–29 August 1997, pp. 115–145 (1998)Google Scholar
  26. 26.
    Pi D.: Study the stability of solutions of functional differential equations via fixed points. Nonlinear Anal. 74, 639–651 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Somolinos A.: Periodic solution of the sunflower equation \({\ddot{x}+(a/r)\dot{x}+(b/r)\sin x(t-r)=0}\). Q. Appl. Math. 4, 468–478 (1978)Google Scholar
  28. 28.
    Stepan G.: Delay effects in the human sensory system during balancing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367, 1195–1212 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Szalai R., Stepan G.: Period doubling bifurcation and center manifold reduction in a time-periodic and time-delayed model of machining. J. Vib. Control 16, 1169–1187 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Szydlowski M., Krawiec A.: The stability problem in the Kaldor–Kalecki business cycle model. Chaos Solitons Fractals 25, 299–305 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Tunq C.: Stability to vector Lienard equation with constant deviating argument. Nonlinear Dyn. 73, 1245–1251 (2013)CrossRefGoogle Scholar
  32. 32.
    Wan M., Zhang W., Dang J., Yang Y.: A unified stability prediction method for milling process with multiple delays. Int. J. Mach. Tools Manuf. 50, 29–41 (2010)CrossRefGoogle Scholar
  33. 33.
    Xie Q., Zhang Q.: Stability predictions of milling with variable spindle speed using an improved semi-discretization method. Math. Comput. Simul. 85, 78–89 (2012)CrossRefGoogle Scholar
  34. 34.
    Yan J.: Existence of oscillatory solutions of forced second order delay differential equations. Appl. Math. Lett. 24, 1455–1460 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang B.: Necessary and sufficient conditions for boundedness and oscillation in the retarded Lienard equation. J. Math. Anal. Appl. 200, 453–473 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang B.: Boundedness and stability of solutions of the retarded Lienard equation with negative damping. Nonlinear Anal. 20, 303–313 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang B.: On the retarded Lienard equation. Proc. Am. Math. Soc. 115, 779–785 (1992)zbMATHGoogle Scholar
  38. 38.
    Zhang B.: Fixed points and stability in differential equations with variable delays. Nonlinear Anal. 63, e233–e242 (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  3. 3.Department of MathematicsVancouver Island UniversityNanaimoCanada

Personalised recommendations